
Server-Centric P3P

Rakesh Agrawal Jerry Kiernan Ramakrishnan Srikant Yirong Xu

Abstract

We propose a server-centric architecture for P3P that
reuses database technology for implementation, as opposed
to the prevailing client-centric implementations based on
specialized engines. The server-centric implementation has
several advantages including: setting up the infrastructure
necessary for ensuring that web sites act according to their
stated policies, allowing P3P to be deployed in thin, mo-
bile clients that are likely to dominate Internet access in
the future, and allowing site owners to refine their policies
based on the privacy preferences of their users. Our ex-
periments indicate that it performs significantly better than
the sole public-domain client-centric implementation and
that the latency introduced by preference matching is small
enough for real-world deployments of P3P. We believe a
good future direction for P3P would be to standardize on
the server-centric architecture as an alternative to the cur-
rent client-centric architecture.

1. Introduction

Platform for Privacy Preferences (P3P), developed by the
World Wide Web Consortium(W3C), is the most significant
effort underway to enable users to gain more control over
what information a web-site collects. It provides a way for a
web site to encode its data-collection and data-use practices
in a machine-readable XML format, known as a P3P pol-
icy [7], which can be programmatically compared against
a user’s privacy preferences. A user may specify privacy
preferences in APPEL1, which provides an XML format for
expressing preferences and an algorithm for matching pref-
erences against policies [6]. A web site can have different
privacy policies governing different parts of the site. P3P
provides for aReference Filein which a site can set up as-
sociations between web pages and policies.

In this paper, we propose a server-centric architecture
for P3P that reuses database technology, as opposed to the

This position statement is an abbreviated version of [2], which has been
accepted for publication in the 19th International Conference on Data En-
gineering (ICDE 2003).

1P3P does not require that APPEL be necessarily used as the language
for expressingprivacy preferences. However, we are not aware of any other
viable alternative.

Figure 1. Creation and Installation of Policies
(Client-Centric)

prevailing client-centric implementations based on special-
ized engines. The server-centric architecture has several ad-
vantages (discussed in Section 4) including: setting up the
infrastructure necessary for ensuring that web sites act ac-
cording to their stated policies, allowing P3P to be deployed
in thin, mobile clients that are likely to dominate Internet
access in the future, and allowing site owners to refine their
policies based on the privacy preferences of their users. Our
experiments indicate that the proposed server-centric archi-
tecture performs significantly better than the sole public-
domain client-centric implementation [8]. These experi-
ments also show that the proposed architecture has the nec-
essary performance for it to be used in practical deploy-
ments of P3P.

We assume familiarity with the P3P specifications [6]
[7]. We also assume familiarity with the basic concepts
of XML. Throughout the paper, we use “element” and “at-
tribute” as in the XML specification.

2. Current Client-Centric Architecture for P3P

A hypothetical architecture for implementing P3P has
been described in [9]. There are two parts to deploying P3P.
Web sites first create and install policy files at their sites
(see Figure 1). Then as the users browse a web site, their
preferences are checked against a site’s policy before they
access the site (see Figure 2).

There are two prominent implementations of the above
architecture: Microsoft IE6 and AT&T Privacy Bird.

3. Server-Centric Architecture for P3P

We propose a server-centric architecture for deploying
P3P as an alternative to the prevailing client-centric archi-
tecture. In this architecture, a website deploying P3P first

1



Figure 2. Policy-Preference Matching (Client-
Centric)

Figure 3. Creation and Installation of Policies
(Server-Centric)

Figure 4. Policy-Preference Matching (Server-
Centric)

installs its privacy policies in a database system as shown
in Figure 3. Then database querying is used for matching a
user’s preferences against privacy policies as shown in Fig-
ure 4.2

We envision three variations of this architecture:

1. Convert privacy policies into relational tables [3] [5],
and convert an APPEL preference into an SQL query
for matching.

2. Store privacy policies in relational tables, define an
XML view over them [3] [5], and use an XQuery [4]
derived from an APPEL preference for matching.

3. Store privacy policies in a native XML store and use an
XQuery derived from an APPEL preference for match-
ing.

Due to space constraint, this paper only discusses the
first architecture in which the policies are stored in rela-
tional tables and APPEL preferences are converted into
SQL queries for matching. See [2] for the results of our
study of the latter two architectures. In the experiments re-
ported therein, these architectures did not fare well com-
pared to the SQL variant, indicating yet untapped perfor-
mance enhancement opportunities in the XML stores.

3.1. Other Alternatives

There are two orthogonal dimensions in the space of
choices for implementing P3P:

1. What engine should be used for matching a preference
against a policy? Should it be a specialized engine (e.g.
a native APPEL engine) or should it be a general pur-
pose engine (e.g. a database engine)?

2. Where should the matching take place? Should it hap-
pen at the client or the server?

Client Server
Specialized engine Current ?
Database engine ? Proposed

Figure 5. Architectural Choices

Figure 5 shows the decision matrix. The current P3P
deployments are using specialized APPEL engines to do
preference matching at the clients. It is possible to con-
tinue to use a specialized engine, but move the matching
to the server. However, this choice is less attractive as we
lose the benefits of using the database engine for matching.
Similarly, it is possible to do the checking at the client, but

2We are assuming that the client preferences will continue to be ex-
pressed in APPEL and they will be translated into database queries be-
fore the matching takes place. This translation step may become unneces-
sary should the proposed architecture catch on. For in that case, database
queries may replace APPEL for representing privacy preferences and
the GUI tools for generating preferences may directly generate database
queries.

2



use database querying. This alternative has the advantage
of avoiding the need for a specialized engine. However, it
will require moving the database tables from the server to
a light-weight main memory database system in the client,
which is also not very attractive. We have, therefore, fo-
cussed on the alternative of using database querying at the
server.

4. Advantages and Disadvantages

The following are some of the advantages of the server-
centric architecture of P3P over the client-centric architec-
ture:

� The preference checking at the client leads to heavier
clients, which is a problem for thin, mobile devices that
are likely to dominate Internet access in the future. Our
proposal allows for lean clients.

� An upgrade in P3P specification may require an up-
grade in every client, which can be a couple of or-
ders of magnitude greater effort than upgrading all the
servers.

� As new privacy-sensitive applications emerge, they
will each require building preference checking into
them, rather than reusing checking done at the server.

� Site owners can refine their policies if they know what
policies have a conflict with the privacy preferences of
their users. The current architecture does not allow the
site owners to obtain this information.

Using databases for preference matching (in the server-
centric architecture) yields the following additional advan-
tages:

� We are creating the infrastructure necessary for en-
hancing P3P with enforcement in the future. The pri-
vacy data tables built for checking preferences against
policies may serve as meta data for ensuring that poli-
cies are followed.

� Specialized preference checking engines are reinvent-
ing querying. We, on the other hand, can reuse the
proven database technology for checking preferences
against policies.

� Policies of a website will not stay static forever.
Versions of policies can be better managed using a
database system than the current file system based im-
plementations.

The server-centric architecture has some disadvantages
too, including:

� There needs to be a greater amount of trust in the
server. For example, the server can see the user’s pref-
erences. Similarly, the user has to trust the database
software being used by the server, whereas the user
can (in principle) choose the checking software used
in the browser.

� By caching a reference file, the client may avoid some
checks, assuming a user visits many pages that are
governed by the same policy. On the other hand, it
is possible to design a hybrid architecture in which the
reference file processing is done at the client while the
preference checking is done at the server.

5. Implementation Experience

We now present the experience from our implementation
of the server-centric P3P architecture.

5.1. System Description

Our implementation consists of the following parts:

� Database Schema for P3P:We first define a schema
for storing policy data in the relational tables. This
schema contains a table for every element defined in
the P3P policy. The tables are linked using foreign
keys reflecting the XML structure of the policies.

� Storing Policies in the Database:A given P3P policy
is parsed and shredded as a set of records in the tables.

� Translation of APPEL into SQL Queries:An APPEL
preference may contain multiple rules. These rules are
matched against a policy in the order in which they
appear in the preference. We translate each rule into a
SQL query.

� Query Evaluation: SQL queries corresponding to a
preference are submitted to the database engine in or-
der. The result of the query evaluation yields the action
to be taken.

See [2] for the details of the implementation.

5.2. Experimental Setup

We conduct experiments to study the performance of our
database implementation of P3P. Our experiments measured
the time to match a P3P policy with an APPEL preference,
first using a native APPEL engine and then using a database
engine. Both the APPEL engine and the database engine
were run on a Windows NT 4.0 server with dual 600 MHz
processors and 512 MB of memory.

The APPEL engine we used is available from the Joint
Research Center (JRC) [8]. To the best of our knowledge,
it is the only APPEL engine currently available in public
domain. The database system we used was DB2 UDB 7.2.
The policy database was created under DB2’s default set-
tings, with the application heap size set to 4 MB.

5.3. Data Set

We used 29 P3P policies in our experiments. They
were obtained by crawling the web sites of the Fortune

3



Preference #Rules Size (KB)
Very High 10 3.1
High 7 2.8
Medium 4 2.1
Low 2 0.9
Very Low 1 0.3
Average 4.8 1.9

Figure 6. JRC APPEL preferences

APPEL SQL
Engine Convert Query Total

Average 2.63 0.08 0.08 0.16
Max 9.08 0.14 0.24 0.34
Min 0.98 0.04 < 0.001 0.04

Figure 7. Execution time for matching a pref-
erence against a policy (seconds)

1000 companies looking for P3P policies. We found 29
companies with P3P policies, including companies such
as AT&T, IBM, McGraw Hill, and Progressive Insurance
Group. Sizes of these policies vary from 1.6 to 11.9 KBytes,
with the average size being 4.4 KBytes. These policies con-
tained a total of 54 statements (about 2 statements per policy
on average).

We used 5 APPEL preferences in our experiments.
These preferences were taken from the JRC site [8] and con-
stitute their test suite. JRC designed these preferences for
different levels of sensitivity for privacy: Very High, High,
Medium, Low, and Very Low. Figure 6 lists the sizes of
preferences and the number of rules they contained.

5.4. Performance Results

5.4.1 Shredding

We measured the time needed for shredding each of the
30 privacy policies and storing the shredded policies into
privacy tables in DB2 as per the schema defined in Sec-
tion 5.1. The average shredding time was 3.19 seconds,
with the maximum and minimum being 11.94 and 1.17 sec-
onds respectively. Since a policy changes infrequently, the
lifetime cost of shredding can be considered negligible.

5.4.2 Matching

Figure 7 shows the performance of matching preferences
against policies for the the native APPEL and SQL imple-
mentations. Each preference was matched against every
policy. The figure shows the average, maximum, and mini-
mum in seconds for matching a preference against a policy.
For the SQL implementation, we separate the time needed
for converting APPEL into SQL (conversion time) and the
time needed for matching (query time). The total time is the
sum of conversion and query times. Figure 8 shows the per-
formance numbers broken down per five preference types.

APPEL SQLPreference
Engine Convert Query Total

Very High 2.65 0.09 0.08 0.17
High 2.68 0.10 0.14 0.24
Medium 2.66 0.13 0.14 0.27
Low 2.60 0.06 0.03 0.09
Very Low 2.54 0.04 < 0.01 0.05

Figure 8. Per-preference-type execution times
for matching a preference against a policy
(seconds)

The numbers shown in Figure 7 and 8 are the “warm”
numbers. They reflect the time likely to be experienced
in deployed systems. The system was warmed up by first
matching an extra (artificial) preference and discarding this
time. This factors out one-time costs such as the JVM load-
ing the classes. The difference between the warm and cold
average matching times was about 1.4 seconds for the native
APPEL engine and 1 second for the SQL implementation.
For the SQL implementation, we stopped and restarted DB2
after matching each preference to avoid any advantage due
to DB2 query caching.

Several conclusions can be drawn from these figures.
First is the surprisingly good performance of the SQL im-
plementation when compared to the native APPEL engine.
We would have been satisfied if the SQL implementation
came close to the APPEL implementation. But the SQL im-
plementation turns out to be more than 15 times faster, even
with the conversion time included in the SQL numbers. If
we just compare the matching time, the SQL implementa-
tion is 30 times faster. The latter is a meaningful compari-
son as it is not unreasonable to think of a P3P deployment
in which the preference generation GUI tool produces pref-
erences as a set of SQL statements.

To understand this large performance difference, we pro-
filed the APPEL engine. Before matching a preference
against a policy, the APPEL engine first augments every
data element in the policy with the corresponding categories
predefined in the P3P base schema (see Section 5.4.6 in [6]).
We found that this augmentationaccounts for most of the
difference in performance. In a client-centric architecture,
the APPEL engine running in the client has to incur this
cost for every preference checking. Our SQL implementa-
tion, on the other hand, does this expansion while shredding
the policy into relational tables, and incurs no correspond-
ing cost at the time of preference checking. Since a policy
changes infrequently, the cost of shredding amortized over a
large number of matchings of different preferences against
a policy can be considered negligible.

More important than the relative comparison is the abso-
lute time needed for matching preferences against policies.
Figures 7 and 8 show that the latency introduced by our
SQL implementation for preference matching is more than
acceptable for it to be used in practical P3P deployments.

4



6. Conclusion

We proposed a reference architecture for a server-centric
implementation of P3P and showed that it can be imple-
mented by reusing the database querying technology, as op-
posed to the prevailing client-centric implementations based
on specialized engines. Not only does the proposed archi-
tecture have qualitative advantages, our experiments indi-
cate that it performs significantly better than the sole public-
domain client-centric implementation and that the latency
introduced by preference matching is small enough for real-
world deployments of P3P.

The biggest advantage of a server-centric architecture is
that it sets us up for adding enforcement mechanisms to en-
sure that sites act according to their stated policies. The ab-
sence of enforcement mechanism is the major criticism of
the current P3P standard. We have outlined the architectural
elements needed in a data system for such enforcement in
[1]. A good future direction for P3P would be to standard-
ize on the server-centric architecture and add enforcement
mechanisms.

References

[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic
databases. In28th Int’l Conference on Very Large Databases,
Hong Kong, China, August 2002.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Implementing
P3P using database technology. In19th Int’l Conference on
Data Engineering, Bangalore, India, March 2003.

[3] M. Benedikt, M. Fernandez, J. Freire, and A. Sahuguet. XML
and data management. InWWW-2002 Tutorial, Honolulu,
Hawaii, May 2002.

[4] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Ro-
bie, J. Simeon, and M. Stefanescu, editors.XQuery 1.0: An
XML Query Language. W3C Working Draft, April 2002.

[5] S. Chaudhuri and K. Shim. Storage and retrieval of XML data
using relational databases. InVLDB Tutorial, Roma, Italy,
2001.

[6] L. Cranor, M. Langheinrich, and M. Marchiori.A P3P Pref-
erence Exchange Language 1.0 (APPEL1.0). W3C Working
Draft, February 2001.

[7] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-
Marshall, and J. Reagle.The Platform for Privacy Prefer-
ences 1.0 (P3P1.0) Specification. W3C Recommendation,
April 2002.

[8] JRC P3P Resource Centre. http://p3p.jrc.it.

[9] The World Wide Web Consortium. P3P 1.0: A
New Standard in Online Privacy. Available from
http://www.w3.org/P3P/brochure.html .

5


