The VLDB Journal (2003) / Digital Object Identifier (DOI) 10.1007/s00778-003-0097-x

Watermarking relational data: framework, algorithms and analysis*

Rakesh Agrawal, Peter J. Haas, Jerry Kiernan

IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA;

e-mail: ragrawal @acm.org

Edited by P. Bernstein. Received: July 29, 2002 / Accepted: December 10, 2002

Published online: & 2003 — (©) Springer-Verlag 2003

Abstract. We enunciate the need for watermarking database
relations to deter data piracy, identify the characteristics of
relational data that pose unique challenges for watermarking,
and delineate desirable properties of a watermarking system
for relational data. We then present an effective watermarking
technique geared for relational data. This technique ensures
that some bit positions of some of the attributes of some of
the tuples contain specific values. The specific bit locations
and values are algorithmically determined under the control
of a secret key known only to the owner of the data. This bit
pattern constitutes the watermark. Only if one has access to the
secret key can the watermark be detected with high probability.
Detecting the watermark requires access neither to the original
data nor the watermark, and the watermark can be easily and
efficiently maintained in the presence of insertions, updates,
and deletions. Our analysis shows that the proposed technique
is robust against various forms of malicious attacks as well as
benign updates to the data. Using an implementation running
on DB2, we also show that the algorithms perform well enough
to be used in real-world applications.

Keywords: Watermarking — Steganography — Information
hiding

1 Introduction

The piracy of software, images, video, audio, and text has long
been a concern for owners of these digital assets. Protection
schemes are usually based upon the insertion of digital wa-
termarks into the data [5,10,12]. The watermarking software
introduces small errors into the object being watermarked.
These intentional errors are called marks, and all the marks
together constitute the watermark. The marks are chosen so
as to have an insignificant impact on the usefulness of the data
and are placed in such a way that a malicious user cannot de-
stroy them without making the data significantly less useful.
Although watermarking does not prevent illegal copying, it

* A preliminary version of this paper appeared in the Proceedings
of the 28th VLDB Conference, Hong Kong, China, 2002.

deters such copying by providing a means for establishing the
original ownership of a redistributed copy.

The increasing use of databases in applications beyond
“behind-the-firewalls data processing” is creating a similar
need for watermarking databases. The Internet is exerting
tremendous pressure on data providers to create services that
allow users to search and access databases remotely. Although
this trend is a boon to end users, it exposes the data providers
to the threat of data theft. Providers are therefore demanding
technology for identifying pirated copies of their databases.

1.1 The need for new watermarking techniques

There is a rich body of literature on watermarking multimedia
data [5,10,12]. Most of these techniques were initially devel-
oped for still images [11] and later extended to video [9] and
audio sources [3]. While there is much to learn from this litera-
ture, there are also new technical challenges because relational
and multimedia data differ in a number of important respects:

e A multimedia object consists of a large number of bits
with considerable redundancy. Thus, the watermark has a
large cover in which to hide. A database relation consists
of tuples, each of which represents a separate object. The
watermark needs to be spread over these separate objects.

o The relative spatial/temporal positioning of various pieces
of a multimedia object typically does not change. Tuples
of a relation, on the other hand, constitute a set, and there
is no implied ordering between them.

e Multimedia objects typically remain intact; portions of an
object cannot be dropped or replaced arbitrarily without
causing perceptual changes in the object. On the other
hand, tuple insertions, deletions, and updates are the norm
in the database setting.

Because of these differences, techniques developed for
multimedia data cannot be directly used for watermarking re-
lations. To elaborate this point further, let us map a relation to
an image by treating every attribute value as a pixel. Unfor-
tunately, the “image” thus defined will lack many properties
of a real image. For instance, pixels in a neighborhood in a
real image are usually highly correlated, and this assumption

2 R. Agrawal et al.: Watermarking relational data: framework, algorithms and analysis

forms the basis of many techniques such as predictive cod-
ing for deciding watermark locations [8]. Several techniques
first apply a transform (e.g., discrete Fourier, discrete cosine,
Mellin-Fourier, wavelet) to the image, insert the watermark in
the transformed space, and then invert the transform [8]. The
noise introduced by the watermarking signal is thus spread
over the whole image. A direct application of these techniques
to a relation will introduce errors in all of the attribute values,
which might not be acceptable. Furthermore, such a water-
mark might not survive even minor updates to the relation.

Similarly, watermarking techniques for text are not appli-
cable to databases because these techniques typically exploit
special properties of text formatting and semantics. For exam-
ple, watermarks are often introduced by altering the spacing
between words and lines of text [17]. Other techniques rely on
rephrasing some sentences in the text [1]. Although these tech-
niques might be useful for watermarking relations containing
CLOBs (character large binary objects), their applicability to
relations consisting of simple data types seems dubious.

Techniques for watermarking software not only seem to
hold little promise for database applications but have had only
limited success in their native domain [4]. A key problem is
that the instructions in a computer program can often be re-
arranged without altering the semantics of the program. This
resequencing can destroy a watermark. Techniques have also
been proposed to prevent copying of software, but they require
installation of tamper-resistant modules in users’ machines,
which limits their successful adoption in practice.

1.2 Our contributions

The watermarking of relational data has significant technical
challenges and practical applications that deserve serious re-
search effort. Desiderata for database watermarking systems
need to be specified, followed by development of specific tech-
niques. These techniques will almost certainly incorporate ex-
isting watermarking principles but will also require enhance-
ments and innovations.

In this paper, we provide a set of desiderata and, to demon-
strate the feasibility of watermarking relational data, propose
an effective technique that satisfies these desiderata. Our tech-
nique marks numeric attributes. Specifically, we ensure that
some bit positions for some of the attributes of some of the
tuples contain specific values. The tuples, attributes within a
tuple, bit positions in an attribute, and specific bit values are
all algorithmically determined under the control of a secret
key known only to the owner of the relation. This bit pattern
constitutes the watermark. Only if one has access to the se-
cret key can the watermark be detected with high probability.
Our analysis shows that the watermark can withstand a wide
variety of malicious attacks as well as benign updates.

1.3 Assumptions

A basic principle followed in the literature on watermarking
multimedia content is that the watermark should be hidden in
an imperceptible manner in the perceptive (meaningful) part of
the content [5]. In the database setting, this principle requires
insertion of a watermark into those tuples and attributes whose

omission will significantly decrease the value of the data. For
simplicity, we assume throughout that every tuple of the rela-
tion is important and the owner is responsible for identifying
attributes that define the perceptive part of the relation.

Suppose that the perceptive part of the relation consists
of a set A of attributes. We make the following fundamental
assumption:

The relational table being watermarked is such that
if all (or a large number of) £ least significant bits of
any attribute A € A are dropped or perturbed, then
the value of data is significantly reduced. However, it
is possible to change a small number of the bits and
not decrease the value of the data significantly.

One could argue that data with errors, however small, are
not as valuable as data without any errors. However, we assume
that the decrease in the value of the data is small enough that
the owner is willing to pay this price in exchange for the ability
to assert ownership.

Examples of real-world data sets that satisfy the above as-
sumption include tables of parametric specifications (mechan-
ical, electrical, electronic, chemical, etc.), surveys (geological,
climatic, etc.), and life sciences data (e.g., gene expression). It
is noteworthy that the publishers of books of mathematical ta-
bles — such as logarithm tables and astronomical ephemerides
— have been introducing small errors in their tables for cen-
turies to identify pirated copies [12].

1.4 Organization

The rest of the paper is organized as follows. Section 2 de-
scribes the challenges facing the designer of a watermarking
system: we first outline various processes that can damage,
erase, or otherwise compromise a watermark and then specify
the most important requirements that a watermarking system
must satisfy. Section 3 gives our algorithms for inserting and
detecting watermarks. We also discuss the novelty of these
algorithms with respect to existing work. Sections 4 and 5
analyze the properties of the proposed technique, and Sect. 6
provides an experimental evaluation. We conclude with a sum-
mary and directions for future work in Sect. 7.

2 Challenges for watermarking

There are many ways in which a watermark can potentially
be damaged, erased, or compromised. A watermarking system
must be resistant to both intentional and unintentional assaults,
while not hindering ordinary data-processing operations.

2.1 Threats to a watermark

Suppose that Alice is the owner of a relation R that contains
7 tuples, out of which she has marked w tuples. Activities that

R. Agrawal et al.: Watermarking relational data: framework, algorithms and analysis 3

can damage, erase, or compromise Alice’s watermark include
the following.

Benign updates In the course of ordinary data processing,
marked rows may be deleted and/or a small number of marked
bits may erroneously be flipped.

Malicious attacks An attacker, Mallory,l may steal the data
and try to erase the watermark. Mallory’s malicious attack
may take various forms:

e Bit Attacks: The simplest malicious attack attempts to de-
stroy the watermark by altering one or more bits, e.g., by
deterministically flipping each bit or by setting each bit to
0 or 1 according to the independent toss of a fair coin. The
effectiveness of such an attack is sensitive to the number
of altered bits: if Mallory alters every bit in the database,
then he can easily destroy the watermark, but he has also
made his data completely useless. The more information
Mallory has about the locations of the marked bits, the
more effective his attack.

e Rounding Attack: Mallory may try to lose the marks con-
tained in a numeric attribute by rounding all the values of
the attribute. For this attack to be effective, Mallory needs
to correctly guess the number of bit positions involved in
the watermark. If he underestimates this number, his attack
may not succeed; if he overestimates it, he has degraded
the quality of his data more than necessary. Even if his
guess is correct, his data will be inferior to Alice’s data
because his data values are less precise.

o Transformations: An attack related to the rounding attack
is one in which the numeric values are linearly trans-
formed. For example, Mallory may convert the data to
a different unit of measurement (e.g., Fahrenheit to Cel-
sius). Alice simply needs to convert the values back to the
original system in order to recover the marks. In general,
Mallory can apply arbitrary transformations to numeric
values. In this case, Mallory would also need to inform
potential users of the transformation used, and Alice could
then invert the transformation before detecting her water-
mark. Any blatantly unnecessary conversion by Mallory
would likely raise suspicion among users.

o Subset Attack: Mallory may take a subset of the tuples
or attributes of a watermarked relation and hope that the
watermark is lost.

o Mix-and-Match Attack: Mallory may create his relation by
taking disjoint tuples from multiple relations containing
similar information.

False claims of ownership Mallory may try to establish a
plausible (but false) claim of ownership. For example, Mal-
lory may simply add his watermark to Alice’s watermarked
relation and claim ownership. In a related scheme, Mallory
may launch an “invertibility attack” [7] to claim ownership if
he can successfully discover a spurious watermark by trial and
erTor.

! The cryptography literature has conventionally given a male per-
sona to Mallory, the malicious active attacker [18].

2.2 Desiderata for a watermarking system

A watermarking system should satisfy the following proper-
ties:

Robustness Watermarks should be robust against degrada-
tion caused by either benign updates or malicious attacks, as
described in Sect. 2.1.

Accuracy Alice should, with high probability, not detect her
watermark in someone else’s nonpirated database. We call
such an erroneous detection a false hit.

Incremental updatability ~ As Alice adds/deletes tuples or
modifies the values of attributes of R, the watermark should be
incrementally updatable. That is, the watermark values should
only be recomputed for the added or modified tuples.

Blind system Watermark detection should not require the
knowledge of either the original database or the watermark.
This property is critical as it allows the watermark to be de-
tected in a copy of the database relation, irrespective of later
updates to the original relation.

Public system Following Kerckhoffs [13], the watermarking
system should assume that the method used for inserting a
watermark is public. Defense must lie only in the choice of
the secret key. The folly of “security by obscurity” has been
shown repeatedly since the first enunciation of Kerckhoffs’
principle in 1883 [12].

3 Algorithms

We now present a technique for watermarking database rela-
tions that satisfies the desiderata given above. Our technique
marks only numeric attributes and assumes that the marked
attributes are such that small changes in some of their values
are acceptable and nonobvious. All of the numeric attributes of
a relation need not be marked — the data owner is responsible
for deciding which attributes are suitable for marking.

Suppose that we are watermarking a database relation R
whose schemeis R(P, Ao, ..., A,_1), where P is the primary
key attribute. (Sect. 3.6 gives extensions for watermarking a
relation that does not have a primary key attribute.) For sim-
plicity, assume that all v attributes Ay, ..., A, are candi-
dates for marking. Thus each attribute is numeric with values
such that small changes in & least significant bits are imper-
ceptible.?

The gap v is a control parameter that determines the
number w of tuples marked via the approximate relationship
w = 1/7. One can often trade off ~ against &: if fewer tu-
ples are marked, then it might be possible to introduce greater
changes in the values of marked attributes and hence increase
the robustness of a mark to malicious attacks. This trade-off
is discussed in greater detail in Sect. 4.

We denote by r.X the value of attribute X in tuple r € R.
Figure 1 summarizes the important parameters used in our al-
gorithms. These algorithms make use of cryptographic pseu-
dorandom sequences, which we now briefly review.

2 We need not use consecutive ¢ least significant bits for mark-
ing. For instance, we may not use those bit positions in which the
distribution of bit values is skewed [16]. We omit this detail.

4 R. Agrawal et al.: Watermarking relational data: framework, algorithms and analysis

n Number of tuples in the relation

v Number of attributes in the relation
available for marking

13 Number of least significant bits

available for marking in an attribute
1/~ | Target fraction of tuples marked

w Actual number of tuples marked
o Significance level of the test

for detecting a watermark
T Threshold parameter for detecting

a watermark

Fig. 1. Notation

/I The secret key KC is known only to the owner of the database.
// The parameters -y, v, and & are also private to the owner.
/I next(G) gives the next number in the random sequence.

1) foreach tuple r € R do

2) seed G with r. P concatenated with /C

3) if (next(G) mod v equals 0) then // mark this tuple
4) attribute_index ¢ = next(G) mod v // mark attribute A;
5) bit.index j = next(G) mod ¢ // mark 5" bit

6) r.A; = mark(next(G), r.As, 7)

7) mark(random_number ¢, value v, bit.index j) return value

8) if (i is even) then

9) set the j" least significant bit of v to 0
10) else
11) set the j" least significant bit of v to 1

12) returnv

Fig. 2. Watermark insertion algorithm

3.1 Cryptographic pseudorandom sequences

A cryptographically secure pseudorandom sequence generator
G deterministically generates a sequence of numbers in which
it is computationally infeasible to predict the next number in
the sequence [18]. Statistically, the numbers generated by G
appear to be a realized sequence of independent and identi-
cally distributed random variables, in the sense that the num-
bers pass standard statistical tests for these properties [14].
The values in the sequence are determined by the value of an
initial seed. Given a fixed seed value, repeated executions of
G generate the same fixed sequence of numbers every time.
Several pseudorandom sequence generators are described in
[18].

3.2 Watermark insertion

Figure 2 gives the watermark insertion algorithm.? At line 2 the
random sequence generator G is initialized with the primary
key of the tuple concatenated with the secret key K. There-
fore, the sequence of numbers generated for a tuple does not

3 The algorithm is written in a form that simplifies exposition rather
than in the most computationally efficient form.

depend on the sequence generated for any other tuple. This
property makes watermarking insensitive to the ordering of
tuples. Because a secret key is used to seed G, only someone
with knowledge of this key can generate the same sequence
of numbers for a given tuple. This sequence is used to decide
whether or not the tuple should be marked. If the decision is
to mark the tuple, then the sequence is further used to deter-
mine the attribute and the bit position within the attribute to
be marked as well as the value (0 or 1) of the mark.

Line 3 determines if the tuple under consideration will be
marked. For a selected tuple, line 4 determines the attribute
that will be marked among the v candidate attributes. For a
selected attribute, line 5 determines the bit position that will be
marked among ¢ least significant bits. The mark() subroutine
sets the selected bit to 0 or 1 depending on the next number
in the random sequence. Thus, line 9 (line 11) either leaves
the attribute value unchanged or decrements (increments) it.
Consequently, marking decrements some of the values of an
attribute, while it increments some others and leaves some
unchanged.

Thus, for erasing a watermark precisely, the attacker needs
to correctly guess not only the tuples that have been marked
but also the marked attribute within a tuple, the bit position
that has been marked, and the value of the mark.

Databases usually allow attributes to assume null values. If
anull attribute value is encountered while marking a tuple, we
do not apply the mark to the null value, leaving it unchanged.

3.3 Watermark detection

Suppose that Alice wishes to determine whether or not the
relation S published by Mallory has been pirated from her
relation R. We allow the sets of tuples and of attributes in S
to be strict subsets of those in R. We assume, however, that
Mallory does not drop the primary key attribute or change
the value of primary keys because the primary key contains
valuable information and changing it will render the database
less useful.*

Watermark detection proceeds as follows. Alice first iden-
tifies the bits that should have been marked by the insertion
algorithm, basically by executing the operations described in
lines 1 through 5 of the insertion algorithm using the origi-
nal secret key. For each identified bit, Alice tests whether or
not the bit’s value matches the value that should have been
assigned by the insertion algorithm and counts the number of
matches. If there are very many matches, then Alice suspects
piracy. Alice also suspects piracy if there are suspiciously few
matches. For example, if there are no matches at all, then Alice
suspects that Mallory has somehow identified the marked bits
and systematically flipped each one.

More precisely, Alice models the insertion algorithm as
setting bit values according to independent tosses of a fair
coin. If the detection algorithm selects w bits for testing, then
the number of matches has a binomial distribution with pa-
rameters w and 1/2 under the “null” hypothesis that relation
S has not been pirated. Thus Alice expects to see roughly
w/2 matches in the absence of piracy. Suppose that she actu-
ally observes m matches. Alice rejects the null hypothesis and

* If this assumption does not hold, we use the technique in Sect. 3.6.

R. Agrawal et al.: Watermarking relational data: framework, algorithms and analysis 5

b(i;w,1/2)
A z1-(l
@ -
(w/2)2w_
=~al2 =~al2
— —
2oy | L
0 T wl2 T

Fig. 3. Definition of 7

/I K, 7, v, and € have the same values used for watermark insertion.
/l « s the test significance level that the detector preselects.

—

) totalcount = matchcount = 0

2) foreach tuple s € S do
3) seed G with s. P concatenated with C

4) if (next(G) mod v equals 0) then // tuple was marked

5) attribute_index ¢ = next(G) mod v // A; was marked

6) bit_index j = next(G) mod & /1 3" bit was marked
7) totalcount = totalcount + 1

8) matchcount = matchcount + match(next(G), s.A;, j)

9) 7 = threshold(totalcount, «)
10) if ((matchcount < 7) or (matchcount > totalcount — 7)) then
11) suspect piracy

12) match(random number 7, value v, bit.index j) return integer

13) if (¢ is even) then

14) return 1 if %" least significant bit of v is 0 else return 0
15) else
16) return 1 if %" least significant bit of v is 1 else return 0

Fig. 4. Watermark detection algorithm

suspects piracy if m is so large or so small that the probability
of seeing m matches under the null hypothesis is highly un-
likely. Specifically, Alice fixes a small value « € (0,1) and
sets
—t

b(i;w,1/2) > 1—a} (1)

t

€

T= max{t € [0,w/2]: '

7

where

iy

(see Fig. 3). She then suspects piracy if either m < 7 orm >
w—T, since the probability of so few or so many matches under
the null hypothesis is less than or equal to «. The parameter
« is called the significance level of the test.

The watermark detection algorithm is shown in Fig. 4.
Line 3 seeds G with the primary key of the tuple concatenated
with the owner’s secret key. This ensures that the sequence of
random numbers generated for a tuple will be identical to the
one used while marking the relation. Line 4 determines if the

tuple s under consideration should have been marked at the
time of inserting the watermark. Lines 5 and 6 determine the
attribute and the bit that should have been marked. The sub-
routine match() then compares the current bit value with the
value that should have been set for that bit by the watermarking
algorithm.

We thus know at line 9 how many tuples were tested (total-
count) and how many of them contain the expected bit value
(matchcount). The subroutine threshold() computes 7 asin (1),
and the number of matches is compared to the critical values
7 and (totalcount — 7) in line 10.

Figure 4 assumes for simplicity that all the candidate at-
tributes Ay, ..., A,_1 are present in S. If Alice finds a tuple s
in which she should have marked the attribute A; (line 5), but
Mallory has omitted A;, she simply ignores the tuple, so that
neither matchcount nor totalcount is incremented. Similarly, if
a tuple is found whose attribute A; should have been marked,
but A; has a null value, the tuple is ignored.

Observe that, by design, the probability of a false hit is
less than or equal to «. Therefore, by setting « to a sufficiently
small value, Alice can satisfy the accuracy desideratum given
in Sect. 2.2.

3.4 Remarks

Data formats We rely on Java to handle issues related to
data formats for numeric types. Java prescribes specific sizes
for numeric types, which are machine independent. JVM also
hides the complexities arising out of different byte orderings
used on different machines for storing numeric data. Note that
we mark the mantissa of a floating point number, and decimal
numbers are marked as integers, ignoring scale.

Incremental updatability Whether a tuple is marked or not
depends only on its primary key attribute. Thus a tuple can
be deleted, inserted, or updated without examining or altering
any other tuple. Indeed, a deleted tuple requires no processing
by the watermarking algorithm, and an inserted tuple is simply
marked as needed. When updating the primary key attribute
of a tuple, we recompute the tuple’s marking before storing
it in the database. When updating a nonprimary key attribute,
nothing need be done if the algorithm has not selected this
attribute for marking. On the other hand, if the algorithm has
selected the attribute, the mark is applied to the attribute’s
value before the tuple is stored in the database.

Blind watermarking The detection algorithm is blind. It sim-
ply extracts w bits of information from the data, without re-
quiring access to the original data or watermark to arrive at its
decision. Blind watermarking is critical for database relations
since relations are frequently updated. Each version of the re-
lation would need to be kept if the original were required for
detecting a watermark.

3.5 Extensions

We have assumed up to now that any two attributes are marked
at the same rate. This need not be the case. Alice may choose
to mark different attributes at different rates because the at-
tributes may tolerate different error rates and, if Alice hides

6 R. Agrawal et al.: Watermarking relational data: framework, algorithms and analysis

the rate parameters, Mallory has additional opportunities to
make mistakes. Similarly, Alice may vary, from one attribute
to another, the number of bits available for marking. Again,
the reason could be that different attributes may tolerate differ-
ent levels of error and Alice may want to create an additional
source of mistakes for Mallory. To handle these extensions,
the basic algorithm can be modified as follows.

Varying the marking rates Associate with each attribute
A; a probability pa, that reflects the relative marking rate
for A;; the probabilities satisfy the usual requirement that
S pa, = 1. Modify line 4 of the watermark insertion
algorithm so that next(G) is used to probe this probability
distribution and select the attribute; for the cost of an extra
invocation of the next() operator, the attribute can be quickly
selected using the Alias Method [15]. Modify line 5 of the wa-
termark detection algorithm to use the same attribute selection
procedure.

Varying the number of candidate bit positions Replace the
global ¢ parameter with v parameters 4., ...,£4,. Modify
lines 5 and 6 of the watermark insertion and detection algo-
rithms, respectively, to use £ 4, instead of &.

3.6 Relations without primary keys

The watermarking technique described above is predicated on
the existence of a primary key in the relation being water-
marked. Primary keys arise naturally in real-life situations,
and we expect a primary key to be present in most of the rela-
tions that someone would be interested in watermarking. We
now discuss how to extend our technique when a primary key
is not available.

Assume first that the relation R consists of a single nu-
meric attribute A, and partition the bits of the attribute A into
two groups. Use x bits of the value 7. A in place of the pri-
mary key and the remaining ¢ for marking in the insertion
and detection algorithms. Unlike a primary key, it is possible
for the y bits to have identical values in two different tuples.
The presence of duplicate values does not prevent either wa-
termark insertion or detection. However, the x bits should be
chosen such that these duplicates are minimized because an
excessive number of duplicates will result in many identical
marks that an attacker can potentially exploit.

If the relation has multiple numeric attributes, use one
of them in place of the primary key and the remainder for
marking. Choose the attribute that has minimum duplicates to
serve as the substitute. Alternatively, the concatenation of bits
from multiple attributes can be used in place of the primary
key in order to reduce duplicates. The drawback to this latter
approach is that the watermark cannot be detected if Mallory
deletes any one of these attributes.

3.7 Related work

Dugley and Roche [8] classify the various techniques for wa-
termarking images along the following dimensions: (i) the
method for selecting pixels where the watermark message will
be hidden, (ii) the choice of workspace to perform the hiding
operation, (iii) the strategy for formatting the message, (iv) the

method for merging the message and cover, and (v) the op-
eration needed for extracting the message. According to this
framework, our technique uses a secret key and the primary
key to select the bit positions. We do the hiding in the original
space (i.e., no wavelet transformations, etc.). We do not have
a fixed message; the bit pattern that constitutes the message
is dynamically and algorithmically computed (and incremen-
tally updated). The merging operation is a bit operation, driven
by a truth table defined by the mark subroutine of the insertion
algorithm. The extraction operation is the dual of the merge
operation.

The technique that is closest to ours in the Dugley-Roche
taxonomy is the patchwork algorithm [2]. This algorithm
chooses random pairs of points (a;, b;) of an image in the
spectral domain and increases the brightness at a; by one unit
while correspondingly decreasing the brightness at b;. The
patchwork algorithm is not readily adaptable to database ap-
plications, for two reasons. First, completely random changes
to relational data can potentially introduce large errors. Sec-
ond, it is not clear how to handle incremental updates and how
to protect the watermark from various forms of attacks.

Another related method is the technique proposed in [1]
for watermarking a sequence of numbers. The basic idea is to
modify the numbers, interpreted as integers, to force them to
be quadratic residues or nonresidues modulo a secret prime,
according to the parity of the next bit of a user-provided mes-
sage. The watermark is repeated many times throughout the
data. The advantage of our technique is that we do not require
data to be ordered and hence our technique is robust in the
presence of updates. We also do not have a fixed message that
is encrypted and repeated in the data.

4 Analysis of robustness

We now analyze the robustness of our watermarking tech-
nique against various forms of malicious attacks and benign
updates. Suppose that Alice has fixed a gap value of v and
that the insertion algorithm has marked w out of 7 tuples in
table R. We model w as a random variable having a binomial
distribution with parameters 7 and 1/~ so that the algorithm
marks 7/~ tuples on average. To detect her watermark, Alice
uses a significance level of a.. Assume o = 0.01 unless stated
otherwise. In this and the following two sections, we assume
an equal marking rate and the same value of £ for all attributes.

4.1 Subsetting attacks

Mallory may try to destroy the watermark by subsetting either
tuples or attributes. As discussed below, these two attacks are
closely related.

4.1.1 Subsetting tuples

The tuple-based subsetting attack rests on the following ob-
servation: if exactly w tuples are selected for testing and the
significance level « is such that o/2 < 27, then the defini-
tion in Eq. 1 implies that 7 = 0, so that the test for detecting
the watermark is incapable of yielding a positive result. In

R. Agrawal et al.: Watermarking relational data: framework, algorithms and analysis 7

other words, Mallory can successfully destroy the watermark
if he can take a subset of Alice’s table R that contains less than
Wmin (@) marked tuples, where

Wmin(a) = 1 — [log, a

Note that if &« = 10™™, then wpin () ~ 3.3m + 1.

Suppose that Alice has marked w tuples and Mallory takes
a Bernoulli(x) sample of the # tuples in R. In other words,
Mallory includes each tuple ¢ in the sample with probability x
and excludes ¢ with probability 1 — k, independent of the other
tuples, so that the sample contains 7 tuples on average. Most
current relational database systems support this type of sam-
pling. Given that Alice initially marked w tuples, the number
M of marked tuples in Mallory’s sample has a binomial distri-
bution, that is, P{ M =i | w} = b(i;w, x).> It follows that
the conditional probability of a successful attack is computed
as

P{success |w} =P{M < wpn(a) |w}

= B(wmin(a) — 1w, I*i)

where B(k;n,p) = Zf:o b(i,n,p) is the binomial cumula-
tive distribution function.® The “—1” in the rightmost term
arises from the fact that M takes on only integer values.

As mentioned previously, we model the number w of
marked tuples in IR as a binomial random variable with pa-
rameters 77 and 1/-. It is not hard to see — and can be rig-
orously shown using, for example, an argument based on
moment-generating functions — that taking a Bernoulli(1/7)
sample of the 7 tuples in the database and then taking a fur-
ther Bernoulli(x) subsample is statistically equivalent to di-
rectly taking a Bernoulli(k/+) sample from the database. It
follows that the unconditional distribution of M is binomial
with parameters 1 and x/~. The unconditional probability of
a successful subsetting attack is therefore

P {success } = B(wmin(a) — 1;7,5/7)

Note that the foregoing analysis also applies to the case in
which a fraction x of tuples is deleted from R in the course of
ordinary processing.

Figure 5 displays the probability of a successful subsetting
attack for various values of 7/~ and x. Additional experiments
(not reported here) indicate that the probability of a success-
ful attack depends on the database size primarily through the
ratio 17/~ and is relatively insensitive to the absolute size 7 of
the database, so we only show results for the case = 10°.
Provided that Alice sets so that the watermark insertion al-
gorithm marks about 100 tuples, Mallory’s attack will likely
fail if he takes more than 10% or so of Alice’s tuples. If the in-
sertion algorithm marks roughly 1000 tuples, Mallory’s attack
will almost certainly fail if he takes more than 2.5% or so of
Alice’s tuples. The number of tuples that Alice needs to mark
is essentially independent of the absolute number of tuples in
the database. Thus the larger the database, the easier it is to
protect.

3 If simple random sampling is used, then M has a hypergeomet-
ric distribution instead; the qualitative results of our analysis do not
change, however.

® We take B(k;n,p) = 0 for k < 0 and B(k;n,p) = 1 for
k> n.

l T T
: nh=10 ——
% 1 o NA=100 -
€ ol \ NA=1000 x|
g U°L NA=10000 &
s ‘
@ : \
® 06 .
(&) H \
[&] | X
> \\
0 : \
S 04t .
2 =-,
3 :
X X u

g 02F %
D_ % .

0 le—s * U —

0.001 0.05 0.1 0.2

Fraction of tuples selected (k)

Fig. 5. Probability of a successful subsetting attack (= 10°%, o =
0.01)

4.1.2 Subsetting attributes

With respect to the watermark detection algorithm, removing
a fraction 7 of the v attributes that are candidates for marking
is tantamount to removing those marked tuples whose marked
attribute belongs to the set of removed attributes. Given that
Alice initially marked w tuples, we can model the number of
marked tuples that “remain” in R as a binomial random vari-
able with parameters w and 1 — 7. Arguing as in the case where
Mallory subsets tuples, we see that the conditional probability
of a successful attack is

P {success | w} = B(wmin(®) — L;w,1 —7)
The unconditional probability of a successful attack is
P {success } = B(wmin(a) — 1;n, (1 =) /7)

Thus the analysis is the same as for the tuple-based subsetting
attack, but with 1 — 7 playing the role of .

4.2 Bit-flipping attacks

In this form of attack, Mallory tries to destroy Alice’s water-
mark by altering the value of the bits that he guesses have been
marked. Suppose that Mallory magically knows the values of
the v and ¢ parameters used by Alice. Since Mallory does not
know which bits have been marked, he randomly selects a
Bernoulli(x) sample from the 7 tuples. For each selected tu-
ple, he flips all of the bits in all £ bit positions in all v attributes.
It is important to bear in mind that when Alice marks a tuple,
she only perturbs a single bit, whereas Mallory perturbs £ x v
bits, thereby inflicting much more damage on each tuple that
he marks.

4.2.1 Deterministic bit-flipping

First suppose that Mallory flips each bit deterministically, i.e.,
that he changes the value = of a bit to 1 — x. For this type
of attack to be successful, he needs to flip between 7 and
w — 7 marked bits. Equivalently, the attack succeeds if and
only if Mallory includes between 7 and w — 7 marked tuples

e e}

0.8

04 A R R -

j
H i Y \
02 f A AR .
1 . K

Conditional probability of successful attack

0 - o g o = ; Y -
0 0.2 0.4 0.6 0.8 1
Fraction of bits flipped (k)

Fig. 6. Conditional probability of a successful deterministic bit-
flipping attack (o = 0.01)

in the Bernoulli(x) sample. As in the analysis of the tuple-
based subsetting attack, the number M of marked tuples in
the sample has a binomial distributionwith P { M =i |w } =
b(i; w, k). The conditional probability of a successful attack,
given that Alice initially marked w tuples, is therefore

P{success |w}=P{7r<M<w-7|w}

= Zb(i;w,n)
= B(w—T1;w,k) — B(T — 1w, k)

Observe that the conditional probability of a successful attack
does not depend upon the size 7 of the database.

Figure 6 displays P { success | w } for various values of
w and k. The figure clearly shows that Mallory’s attack will
fail if he attacks either too few or too many tuples. Indeed, we
can assume that Mallory will never choose « larger than 0.5,
since for £ > 0.5 he can achieve the same level of effective-
ness while greatly reducing the damage to the data by using a
sampling rate of 1 — x. Overall, Alice’s watermark is highly
resistant to Mallory’s attack: provided that Alice marks at least
1000 tuples, then Mallory’s attack will fail unless he damages
40% to 50% of Alice’s tuples. As with the subsetting attack,
the number of tuples that Alice must mark for a given degree
of protection is independent of the size of the database.

4.2.2 Randomized bit flipping

Now suppose that Mallory flips each attacked bit randomly,
i.e., sets each bit equal to 0 or 1 according to the indepen-
dent toss of a fair coin. In effect, Mallory is trying to replace
the watermark with random noise. The number M of tuples
included in the sample has a binomial distribution as before.
The number of matches that Alice observes when she runs the
watermark detection algorithm is K = N + w — M, where
N is the number of matches among the M marked tuples in
Mallory’s sample. Observe that, given M, the random variable
N has a binomial distribution with parameters M and 1/2. It

R. Agrawal et al.: Watermarking relational data: framework, algorithms and analysis

4

2 o
2 08 S A
[%] i
g i :
S ! ;
2 ;

2 06 -
o i

2 =10 —— y ;

3 ®=100 -

T 04 ®=1000 - X o
o ®=10000 -8 *

S 02]
S

S A

g 0 V3 S 3 3 =¥ - * = sh e us

© 0 0.2 0.4 0.6 0.8 1

Fraction of bits randomized (k)

Fig. 7. Conditional probability of a successful randomized bit-
flipping attack (o = 0.01)

follows that the conditional probability of a successful attack,
given that w tuples have been marked, is

P {success | w}
=P{r<K<w-7|w}

=Y P{M=ilw}
xP{r<K<w-7|w,M=1i}
=Y P{M=i|w}
XP{t+M-w<N<M-7|w,M=1i}
=Zb(i;w,/@)
=T
X[B(i—T;i,l/Z)—B(T+i—w—1;i,1/2)

Similar calculations can be used to compute the probability
that the watermark is erased due to random errors in the course
of ordinary data processing. However, this probability is much
lower than the probability of erasure due to a successful ran-
domized bit-flipping attack as described above.

Figure 7 displays P { success | w } for various values of w
and k. If Alice marks at least 100 tuples (regardless of the size
of the database), then Mallory’s attack will have a nonnegligi-
ble probability of success only if he damages at least 50% of
the tuples. Because randomizing a marked bit will only erase
the mark with 50% probability, the randomized bit-flipping
attack has a lower probability of success than the determinis-
tic attack for any fixed values of w > 0 and ~ € [0, 0.5]. For
example, if Alice marks 100 tuples and Mallory attacks 30%
of the tuples in R, then Mallory’s probability of success is
about 0.08 for a deterministic attack but only about 6 x 10~8
for a randomized attack.

Figure 8 displays results similar to those in Fig. 7, but with
a = 0.0001. Decreasing « degrades the robustness of the wa-
termarking system in that the probability of a successful attack
increases for each value of w and «. This effect is relatively
mild, however, as long as w is not too small: even though o

R. Agrawal et al.: Watermarking relational data: framework, algorithms and analysis 9

X

§ 1 T T T K== ~0
© P I
= X i
2 08r i
[0} / B i
g .
o / ! H
> / ! H
2 06t
o { : :
g\ w=10 —+—]
= ®=100 ---%--- 5
T 04r ®=1000 ~x-- / S
o ®=10000 @ ; %
a ; ;
T 02t -
S A o
5) ; .

g 0 P % vy - & o iy

© 0 0.2 0.4 0.6 0.8 1

Fraction of bits randomized (k)

Fig. 8. Conditional probability of a successful randomized bit-
flipping attack (o = 0.0001)

has decreased by two orders of magnitude, Mallory still needs
to damage at least 40% of the data, provided that Alice has
marked at least 100 tuples.

In practice, the value of £ and/or v will probably be un-
known to Mallory. Suppose, for example, that » = 1 and
that Mallory somehow knows the identity of this attribute
but needs to guess the value of £. If Mallory overestimates
&, then the results in Figs. 7 and 8 still hold (although the
degree of damage to the data increases). Suppose, then, that
Alice has marked w tuples and that Mallory underestimates
& by m bits, where 0 < m < & — 1. For simplicity, we as-
sume that exactly w; tuples are marked in one of bit positions
1,2,...,& —m and exactly w, tuples are marked in one of bit
positions § —m +1,£ —m +2,..., £, where

a-[()] |2

Call the first set of marked tuples “type-1" tuples and the sec-
ond set “type-2” tuples. Observe that a type-2 tuple is invul-
nerable to Mallory’s attack. For m > 1, the conditional prob-
ability of a successful randomized bit-flipping attack can now
be derived using an argument almost identical to the argument
for the case m = 0. The main difference is that the random
variable M now denotes the number of type-1 tuples included
in Mallory’s sample and the random variable /N denotes the
number of matches among the M type-1 tuples in Mallory’s
sample. Thus we have

P {success | w}
= >, b(iwr, k)
x [B(z' —74,1/2) = B(r+i—w—1;i,1/2)

Figure 9 displays P { success | w } for various values of
m and k. It can be seen from the figure that underestimating &
by only a few bits can significantly reduce the probability of a
successful attack, even when a large fraction of the tuples are
attacked.

In summary, if Mallory overestimates &, then he introduces
large errors without improving his chances for success; if he
underestimates £, then his chances of success are reduced.

Note that the larger the value of &, the greater the opportunity
for Mallory to underestimate &. Thus Alice can effectively use
the ¢ parameter to foil Mallory. (Of course, choosing a £ that
is too large may result in unacceptable data errors.)

Alice has the additional flexibility of marking any one of
the v attributes. The effect on Mallory of having to guess which
attributes are marked is similar to the effect of having to guess
which bit positions are marked. One key difference is that
increasing v does not increase the perceptibility of the water-
mark, so Alice should choose v to be as large as possible.

4.3 Mix-and-match attack

In the mix-and-match attack, Mallory takes a Bernoulli(k)
sample of the 7 tuples in Alice’s relation R to form a subset
R’ C R. He then takes a Bernoulli(1 — x) sample U’ from
a collection U of 7 tuples from other sources and mixes the
tuples in U’ and R’ to create his relation .S of approximately
the same size as R.

Asbefore, the number M of marked tuples in R’ has a bino-
mial distribution with P { M = i | w } = b(4; w, k). Suppose,
as a simplifying approximation, that the number of tuples in U
that the watermark insertion algorithm would mark is exactly
the same as the number marked in R, namely, w. Then the
number of tuples Ny in U’ tested by the detection algorithm
has a binomial distribution with parameters w and 1 — . Given
Ny, the number of matches N among the N tested tuples in
U’ has a binomial distribution with parameters Ny and 1/2.
Note that M is conditionally independent of Ny and N, given
w. In the following, we write 7 = 7(«, w) to make explicit
the dependence of the threshold parameter on the significance
level and the number of tuples being tested.

To compute the probability of a successful mix-and-match
attack, first observe that, for 0 < 4,5 < w such thati + 5 >
Wimin (@), we have

P {success |w,M =i,Ny =3}

=P{7(,i+j) <M+ N <w—7(a,i+)
|w,M =i,Ny=3j}

=P{r(a,i+j)—i<N<w-—7(a,i+j)—i
’w,Nozj}

=B(w—7(a,i+j) —i;5,1/2)
—B(T(a,i+j)—i—1;j,1/2)

=, jiw,)

On the other hand, for ¢ and j such that i + j < wpin (@), we

have

P{success |w,M =i,Ng=3j}=1

as in our analysis of the tuple-based subsetting attack. Using
the conditional independence of M and Ny, we also have

P{M=iNy=j|w}
S P{M=i|w}P{No=j|w}
:b(i;w,/@)b(j;w,l—/i)

© i, jimyw)

10

X

8 1 T T T T T |0 6 T

= x=0.6 ——
; k=0.7 --->--
S k=0.8 ----x--]
7 08L K=09

Q "

[S]

=

2 06t .
o

2 S

| 04) N .
-8 \

8 02F N\ o T
S \‘5(

S Tl %

g 0 \\\‘w_ B & % &

O

0 1 2 3 4 5 6 7 8
Degree of underestimation (m)

Fig. 9. Conditional probability of a successful randomized bit-
flipping attack when ¢ is underestimated (o« = 0.01, w = 100,

£=29)

Putting these results together, we find that

P {success | w }

= P {success | w, M =i,Ny=j}

4,9

xP{M=iNy=j|w}

P>

i+ <wWmin (@)

DY

i+J > Wmin (a)

where, as before, ¢ and j range between 0 and w. For purposes
of computation, note that

> gl jikw)

i+j <wmin(a)
B1
= ZB(wmin(a) —i—1lw,1—k)b(i;w,K)
i=1

and

> flingiw a)g(i, js kw)
i+J>wmin (o)
= b(i;w, k)
=1
w
x[> flisjiw, a)b(j;w, 1 — k)

j=PB2(4)

where ;1 = min (w, Win (@) — 1) and (o(i) =
max(wmin(a) — 1, 0).

Figure 10 displays P { success | w } for various values of
w and k. If Alice marks 100 (or 1000) tuples, then Mallory’s
attack will almost certainly fail if he includes more than about
20% (or 3%) of Alice’s tuples in his pirated relation.

R. Agrawal et al.: Watermarking relational data: framework, algorithms and analysis

4

S 1= .
bS]

2 *

@ 0.8 |

[0}

Q

[5)

3

2 06

o

2

S 04t

o]

o

o

S 02 ®© *
S

5 .
g [E—— o ek K |
© 0.001 0.01 0.1 1

Fraction of tuples selected from the marked relation (k)

Fig. 10. Conditional probability of a successful mix-and-match attack
(e =0.01)

4.4 False claims of ownership

Mallory may try to claim ownership by simply inserting his
watermark in Alice’s data; we call this strategy an “additive
attack.” The competing ownership claims can be resolved if
there exist one or more bits that both Alice and Mallory have
marked, each with a different value. The idea is simply to
determine which owner’s marks win. The winner must have
overwritten the loser’s bits and hence must have inserted the
watermark later.

Unfortunately, Mallory can, with little difficulty, ensure
that the odds of finding such “conflict” bits are low. Sup-
pose, for example, that Alice has initially marked w 4 bits and
then Mallory executes the watermark insertion algorithm with
parameters yas, Yas, and &py. Under our usual probabilistic
model of the bit-marking process, the probability that a spec-
ified bit marked by Alice is also marked by Mallory is the
product of the probabilities that the tuple containing the bit is
chosen for marking (= 1/7,), that the attribute containing
the bit is also chosen (= 1/v)y), and that the specified bit is
chosen (= 1/&). The probability that Mallory’s mark is dif-
ferent from Alice’s is 1/2, so that the overall probability that
the specified bit is a conflict bit is (2yyvar€0r) L. Because
tuples are marked independently of each other, the probability
that Mallory “succeeds,” i.e., that no conflict bits are found, is

1 wa
P {success | wa } (1 Q’YMVMﬁM) .
For example, if Alice marks 1000 bits and Mallory sets s =
10000, vy = 10, and £y = 5, then P {success | wa } =
(1 —10-6)1900 ~ (.999
As an alternative to adding his own watermark to Alice’s
database, Mallory might try to claim ownership by finding a
key for which the watermark detection algorithm fortuitously
detects the presence of a watermark. This type of “invertibility
attack” [7] rests on the following observation. Suppose that
Mallory fixes values of «a, v, and £ and repeatedly executes
the detection algorithm on Alice’s database, using a different
key each time. Then, by construction, the algorithm will test
positive for a watermark in about 100a% of the runs. Mallory

R. Agrawal et al.: Watermarking relational data: framework, algorithms and analysis 11

can choose one of these spurious watermarks and claim that
he had originally inserted it in the data.

There are several methods for dealing with the watermark-
ing system’s potential vulnerability to false claims of owner-
ship. One method for thwarting an additive attack is to ask both
Alice and Mallory to produce, if available, the original copy
of the data before the watermark was introduced. Alice can
demonstrate the presence of her watermark in Mallory’s origi-
nal database, whereas Mallory cannot show the presence of his
watermark in Alice’s original database. In general, conflicting
ownership claims can be resolved using a secure append-only
registry administered by a trusted third party. When Alice ini-
tially publishes her data, she appends her key to the registry. If
Mallory later claims ownership of the database, the third party
resolves the dispute by determining that (1) Alice’s watermark
is present in the data and (2) Alice’s key was appended to the
registry before Mallory’s key. As a final observation, we note
that the benefit to Mallory from successfully establishing a
false ownership claim is not as great as the benefit from de-
stroying the watermark by means of a successful malicious
attack. Indeed, if the ownership claims cannot be resolved,
then customers may be wary of using contested data, thereby
reducing the value of the pirated database to Mallory.

5 Analysis of imperceptibility

To gain some intuition about the effects of the various al-
gorithm parameters on the perceptibility of the watermark,
suppose that we wish to calculate the mean and variance of
the values of an integer-valued attribute. We model the wa-
termark insertion process by assuming that the original at-
tribute values are x1, 2, ..., %, and the values after inser-
tion of the watermark are z1 + Ay, 22 + Ao, ..., z,; + A,
where { Ay, Ag,..., A, } are independent and identically
distributed (iid) random variables that represent the perturba-
tions caused by watermarking. We further assume that each A;
has the representation A; = L;S;2Y, where, for 1 < i < 1,

1

P{L,=1}=1-P{L;=0}= 0

S; equals either 1 or —1, each with probability 1/2, and U; is
uniformly distributed on{ 0,1,2,...,£ — 1 }. The idea is that
L; =1 if the distinguished attribute for ith tuple is selected
for marking, which occurs with probability (y2)~!, and the
new bit value differs from the original bit value, which occurs
with probability 1/2. The definition of the random variable S;
reflects the fact that the attribute value is as likely to be incre-
mented as decremented. Finally, U; = k if bit £ is selected for
marking.

The mean attribute value for the original data is £ =
(1/n) >_7_, x;, and the perturbed mean attribute value after in-
sertion of the watermark is 2+ A, where A = (1/n) Y7, A;.
The expected error in computing Z is

EN — E[A] =0

which follows from the fact that £ [A;] = 0 for each i. An
easy calculation shows that

E[A?] = E [LAY]

L [1<1+4+42+---+4f—1)}

“owle

B 45 -1
- 6ywE
so that o, the standard deviation of the error, is given by
_ EY2[A? 2¢
oNn = Varl/z[A] = [1] ~
Vi 6yvén

With high probability, the error in computing will lie in the
range [—2.50g,2.50g].

The variance of the original attribute values is given by
Ve = (1/n) X1, (x; — Z)?, and after inserting the watermark
the perturbed value of the variance is

yp _ .12
Vara ==Y [(@i+A) - (z+ D)

=
After some algebra, we can write Vya — V, = VA +2C; A,
where

n =1
and
1< _
Cyn = " D (@i —7) (4 = A)
i=1

Noting that E[C, 4] = 0 and using a standard result for the
sample variance, we find that the expected error in computing
V, is given by

-1 22¢
ev =BVl = (=) Elall = e

To compute oy, the standard deviation of the error, observe
that, by (27.4.2) in [6],

E[AY] — E2 A2 1

[A] [A7] +O()
n

and it is not hard to show that

4 24
E[A]] ~ 3070E
E[A3]V,
n
and Cov[Va, C; a] = 0. It follows that

Var [VA} =

Var [Cy a] =

oy = Var1/2[VA +2C;. A
= (Var[Va] + 4Var[C, a]) /2
218 4 92642y 24¢ 12
~ < 30vvén 367%25277)

With high probability, the error in computing V. will lie in the
range [ey — 2.50y, ey + 2.50].

Our analysis implies that the perceptibility of the water-
mark is highly sensitive to the number of least significant bits
selected for marking. It also follows from our formulas that
the respective relative errors for and V,, become more pro-
nounced when z and V, are small in absolute value. Section 6.2
gives experimental results for a real data set; the results are
consistent with our analytical model.

12

Table 1. Change in variance introduced by watermarking

R. Agrawal et al.: Watermarking relational data: framework, algorithms and analysis

v 10000 1000 100 10

E 4 8 4 8 4 8 4 8
Attribute Mean Variance
Elevation 2959 78391 +3 +16
Aspect 155 12525 +1 +8
Slope 14 56 +1 +14
Horz-Dist-Hydro. 269 45177 +1 +1
Vert-Dist-Hydro. 46 3398 +1 +2 +11
Horz-Dist-Roads 2350 2431272 -1 2 -9 +6
Hillshade-9am 212 717 +1 +12
Hillshade-Noon 223 391 +1 +12
Hillshade-3pm 142 1465 +1 +10
Horz-Dist-FPts 1980 1753490 +1 -3 -1

Our formulas also show the trade-off between the param-
eters v and &: if v is increased, then & can also be increased
without increasing the perceptibility of the watermark. As dis-
cussed in Sect. 4.2, increasing ¢ can improve the robustness
of the watermark. Of course, v must not be increased so far
that the number of marked tuples is set dangerously low, or the
overall effect on robustness will be negative (see the curves
for w = 10 in Figs. 6-8 and Fig. 10).

6 Experimental results

We now report some experimental results that complement
the analysis presented in Sect. 4. Experiments were performed
using the Forest Cover Type data set, available from the Uni-
versity of California at Irvine KDD Archive.” The data set has
581,012 rows, each with 61 attributes. We added an extra at-
tribute called id to serve as the primary key and chose the first
ten integer-valued attributes as candidates for watermarking.
We ran experiments on DB2 UDB v. 7 using JDBC con-
nectivity on a Windows NT Workstation 4.0 with a 400-MHz
Intel processor, 128 MB of memory, and a 10-GB disk drive.
The log file size was set to 20 MB and the lock list to 2 MB.

6.1 Watermarking overhead

We ran two experiments to assess the computational cost of
watermarking and detection. Performance was measured in
elapsed time. Each experiment was repeated 30 times.

The first experiment evaluated the cost of inserting a wa-
termark. We focused on the most expensive scenario by setting
v equal to 1. In this case, the watermarking algorithm reads 7
tuples and finds that every tuple requires marking. However,
on average, half the tuples already have the correct value for
the mark. Therefore, the insertion algorithm updates, on av-
erage, only 7)/2 tuples. We compared the average time (over
the 30 replications) to insert a watermark to the average time
required to read) tuples and update 7)/2 tuples. The compari-
son yielded a ratio of 1.16. This rather small overhead of 16%
is due to the cost of generating the pseudorandom numbers

7 kdd.ics.uci.edu/databases/covertype/covertype.html.

used to insert the watermark. The total elapsed time required
to watermark the relation was 2245s on average. This time
included the cost of logging updates to half of the tuples in the
relation.

The second experiment evaluated the cost of detection. We
again considered the most expensive case by setting v equal
to 1 and choosing the sample size for detecting the watermark
to be the entire relation. The experiment compared the time
required to detect n marks across 7 tuples against the time
required to simply read 7 tuples. The comparison yielded a
ratio of 4.38. The major component of the cost was again
the generation of pseudorandom numbers. The total detection
time was 214 s on average.

These results indicate that our algorithms perform well
enough to be used in real-world applications.

6.2 Effect on mean and variance

We next evaluated experimentally the impact of water-
marking on the mean and variance of values of various
marked attributes. Experiments were performed for -y
10,100, 1000, 10000 and ¢ = 1,4, 8. We found that, for each
attribute, the change in the mean was minuscule in all cases.
Table 1 shows the change in the variance for the different
attributes. The values are rounded to the nearest integer. An
empty entry indicates very little or no change; all entries for
& = 1 are empty and therefore not displayed. As expected, the
largest changes in the variance occur when ¢ is large and ~
is small because of larger perturbations in a greater fraction
of tuples. Overall, the changes are insignificant relative to the
original values of the variances. The only significant change
occurs in the Slope attribute when £ = 8 and v = 10. Com-
pared to the other attributes, Slope has relatively small values
that are perturbed significantly when ¢ is large. These results
are consistent with the analysis in Sect. 5. Note that if any of
the foregoing changes in the variance are deemed unaccept-
able, then the v, £, and v parameters can be adjusted to reduce
the impact of watermarking on the data.

R. Agrawal et al.: Watermarking relational data: framework, algorithms and analysis 13

J a | | false hits

4 v | T robustness
1T v | 1T robustness
1 & | 1T robustness

1 missed watermarks
1 data errors

1 data errors

Fig. 11. Design trade-offs

7 Summary

The following are the major contributions of this paper:

o Identification of rights management of relational data
through watermarking as an important and technically
challenging problem for database research.

e Delineation of the desirable properties of a watermarking
system for relational data.

e Enumeration of malicious attacks from which the water-
mark inserted in a relation must be protected.

e Provision of the first watermarking technique specifically
geared for relational data.

e Analysis and empirical evaluation of the robustness and
effectiveness of the proposed technique to demonstrate the
feasibility of watermarking real-life data sets.

Our watermarking technique has four important tunable
parameters: (i) «, the test significance level, (ii) v, the gap pa-
rameter that determines the target fraction of tuples marked,
(>iii) v, the number of attributes in the relation available for
marking, and (iv) £, the number of least significant bits avail-
able for marking. Figure 11 summarizes the important trade-
offs when selecting the values for these parameters.

In the future, we would like to extend the proposed wa-
termarking technique to also mark nonnumeric attributes. We
also plan to address the related problem of fingerprinting [19]
to be able to identify the culprit in cases where there can be
multiple sources of piracy.

References

1. Atallah M, Wagstaff S (1999) Watermarking with quadratic
residues. In: Proceedings of IS&T/SPIE conference on secu-
rity and watermarking of multimedia contents, January 1999

2. Bender W, Gruhl D, Morimoto N (1995) Techniques for data
hiding. In: Proceedings of the SPIE 2420 (storage and retrieval
for image and video databases III), pp 164-173

10.

11.

13.

14.

16.

17.

18.

19.

. Boney L, Tewfik AH, Hamdy KN (1996) Digital watermarks for

audio signals. In: Proceedings of the international conference
on multimedia computing and systems, Hiroshima, June 1996

. Collberg CS, Thomborson C (2000) Watermarking, tamper-

proofing, and obfuscation — tools for software protection. Tech-
nical report 2000-03, University of Arizona

. Cox 1J, Miller ML (1997) A review of watermarking and the im-

portance of perceptual modeling. In: Proceedings of electronic
imaging, February 1997

. Cramér H (1946) Mathematical methods of statistics. Princeton

University Press, Princeton, NJ

. Craver S,Memon N, Yeo BL, Yeung MM (1998) Resolving right-

ful ownerships with invisible watermarking techniques: Limita-
tions, attacks, and implications. IEEE J Selected Areas Commun
16(4):573-586

. Dugelay JL, Roche S (2000) A survey of current watermarking

techniques. In: Katzenbeisser S, Petitcolas FA (eds) Information
hiding techniques for steganography and digital watermarking.
Artech House, Norwood, MA, pp 121-148

. Hartung F, Girod B (1998) Watermarking of uncompressed and

compressed video. Signal Process 66(3):283-301

Johnson NF, Duric Z, Jajodia S (2000) Information hiding:
steganography and watermarking — attacks and countermea-
sures. Kluwer, Amsterdam

O Ruanaidh JJK, Dowling WJ, Boland FM (1996) Watermarking
digital images for copyright protection. IEEE Proc Vision Signal
Image Process 143(4):250-256

. Katzenbeisser S, Petitcolas FA (eds) Information hiding tech-

niques for steganography and digital watermarking. Artech
House, Norwood, MA

Kerckhofts A (1883) La cryptographie militaire. J Sci Militaires
9:5-38

Knuth D (1981) Seminumerical algorithms. In: The art of com-
puter programming, vol 2. Addison-Wesley, Reading, MA

. Law A, Kelton W (2000) Simulation modeling and analysis, 3rd

edn. McGraw-Hill, New York

Maes M (1998) Twin peaks: the histogram attack on fixed depth
image watermarks. In: Proceedings of the 2nd international
workshop on information hiding, Lecture notes in computer sci-
ence, vol 1525. Springer, Berlin Heidelberg New York, pp 290—
305

Maxemchuk N (1994) Electronic document distribution. Tech-
nical journal, AT&T Labs

Schneier B (1996) Applied cryptography, 2nd edn. Wiley, New
York

Wagner NR (1983) Fingerprinting. In: Proceedings of the IEEE
symposium on security and privacy, Oakland, CA, April 1983,
pp 18-22

