Storage and Querying of E-Commerce Data

Rakesh Agrawal

Amit Somani

Yirong Xu

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120
{ragrawal ,asomani,yirongxu} @us.ibm.com

ABSTRACT

New generation of e-commerce applications require data schemas
that are constantly evolving and sparsely populated. The conven-
tional horizontal row representation fails to meet these require-
ments. We represent objectsin a vertical format storing an object
as a set of tuples. Each tuple consists of an object identifier and
attribute name-value pair. Schema evolution is now easy. How-
ever, writing queries against this format becomes cumbersome. We
create a logical horizontal view of the vertical representation and
transform queries on this view to the vertical table. We present
alternative implementations and performance results that show the
effectiveness of the vertical representation for sparse data. We also
identify additional facilities needed in database systemsto support
these applicationswell.

1. INTRODUCTION

Imagine you run a marketplacefor the electronicsindustry. This
marketplace consolidates information about parts from more than
1000 manufacturersand distributors. Your current catalog contains
nearly 2 million parts classified into 2000 categories. There are
more than 5000 part attributes acrossvarious categories. New sup-
pliers are expected to join your marketplace every week. They
bring with them new parts, causing new attributes to be added to
the current categories and new categories to be added to the cata-
log. You have the enviabletask of designing the back-end database
system to support this marketplace. What do you do?

We found ourselves in this quandary while building such an ex-
perimental marketplace, called Pangea. In this paper, we summa-
rize our experience from implementing this application with the
hopethat our observationswill beuseful to system devel opersinter-
ested in providing effective database support to e-commerce appli-
cations. Theissueswe faced are pervasivein the new generation of
e-commerce applications, such as on-line shops, exchanges, mar-
ketplaces, and portals, which aggregate data from a large number
of providers. The specific e-commerce software used in our imple-
mentation was the IBM Websphere Commerce Server running on
top of the DB2 Universal Data Base System. However, we believe
our observations are generally applicable.

Permissionto copy without feeall or part of thismaterial is granted
provided that the copiesare not madeor distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copyingis
by permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requiresa fee and/or special permission
from the Endowment.

Proceedings of the 27th VL DB Conference, Roma, Italy, 2001

1.1 |Issues

In relational database systems, data objects are conventionally
stored using a horizontal scheme. A data object is represented as
arow of atable. There are as many columns in the table as the
number of attributes the objects have. In trying to store al our
electronic partsin onetable using this scheme, we ran into the fol-
lowing problems:

¢ Large Number of Columns The current database systems do
not permit a large numbers of columnsin atable. This limit
is 1012 columns in DB2 (also in Oracle), whereas we had
nearly 5000 attributes across different categories.

e Sparsity Even if DB2 were to allow the desired number of
columns, we would have had nulls in most of the fields. In
addition to creating storage overhead®, nullsincreasethesize
of theindex and they sort high in the DB2 B+ tree index.

e Schema Evolution We would need frequent altering of the
table to accommodate new parts and categories. The schema
evolution is expensivein the current database systems.

e Performance A query incurs a large performance penalty if
the data records are very wide but only a few columns are
used in the query.

Similar challengesare faced by those building large repositories
of meta data about documents in a digital library. For instance,
an experimental news portal [2] being built at IBM Almaden pro-
cesses5-10 thousand news stories every day. For every story, it ex-
tracts a couple of hundred features such as stemmed words, people,
countries, etc. The features are not fixed a priori and new features
emerge as new stories are processed. A conventional horizontal ta-
ble would need more than 100,000 columnsto storethe datafor the
features that have been identified to date and would need frequent
altering to add new columnsto accommodate newly identified fea-
tures. Other potential applications of the work reported in this pa-
per include storesfor XML [7], RDF [1], KBMS[15], LDAP[19]
and datamining [8] [21].

1.2 Vertical Representation

To address the above problems, many commercial e-commerce
software systems(e.g. IBM Websphere Commerce Server, 12 Tech-
nology, Escalate) define the following 3-ary vertical scheme for
storing objectsin atable:

[Oid (object identifier) [Key (attribute name) [Val (attribute value) |

Figure 1 showsahorizontal table and its corresponding representa-
tion in the vertical format. The symbol L represents a null value.

! For fixed-width fields (e.g. INTEGER), the size of a null value
issame as anon-null value. A VARCHAR null value on the other
hand incurs the overhead of only one byte.

Vertical (V)

Horizontal (H) Olid Iqul Val
Oid | AL A2 | A3 a
1 |A2]| b
1 a b 1
2 | A2 | ¢
2 1 [d
2 | A3 | d
3 1 1 a
4 b | L|d 3 | A3 a
4 | A1l b
4 | A3 | d

Figure 1: Horizontal and Vertical Table Representations

The vertical table containstuples for only those attributes that are
present in an object. Different attributes of an object are tied to-
gether using the same Oid. Schemaevolution is now easy; simply
add new tuples corresponding to new attributes.

However, oncethedatais stored inthe vertical format, new prob-
lems arise. Writing SQL queriesagainst this scheme becomesvery
cumbersome and error-prone. More importantly, the current appli-
cation development tool s designed for horizontal format for storing
objects no longer work.

What is needed is alogical horizontal view on top of the vertical
representation of the data and query rewrite algorithms to convert
relational algebra operatorsfrom the horizontal view to the vertical
representation. This approach is conceptually identical to the view
mechanism used in the database systems. Note, however, that the
valuesin the Key field in the vertical format become column names
inthehorizontal view. Such higher-order viewsare not supportedin
the current database systems. We also need well-tuned processing
strategies to get good query performance.

Thispaper describesthe enablement layer we built ontop of DB2
to realize the above functionadlity. The algebra and query trans-
formations we devel oped and the lessons we learned from the ex-
tensive performance experiments should be of interest to database
practitioners interested in providing support to e-commerce and
similar applications. In building this enablement layer, we con-
sciously did not change the database engine code to make our so-
lution portable and time-expedient. However, we did identify some
capabilities we wish the database system had provided. These new
capabilities should be of interest to the database engine architects
and implementors.

Thereisrich heterogeneousdatabaseresearch literature on trans-
formations between schematically disparate schemas and types of
schematic differences. In [10], Krishnamurthy et al. elogquently
elucidated how data values in one data source may be modeled as
schema (attribute or relation) labels in another. Several languages
have been proposed for querying over schemalabels, including [13]
[17] . Thereis also work on defining higher-order views for inte-
grating heterogeneousdata sources[10] [12] [14].

Closest to this paper is the interesting work presentedin [11] on
the implementation of SchemaSQL. We share with them the goal
of a“non-intrusive” implementation (i.e. without requiring changes
in the database engine code). The extended-algebrawe use in our
query transformations includes v2h and h2v operations that can
be viewed as the specializations of unfold and fold respectively in
[11]. Aswewill seelater in the paper, we have been ableto redlize
substantial performance gainsfrom this specialization.

1.3 Alternative Representations

The work on decomposition storage model [5] [9] split a hori-
zontal table into as many 2-ary tables as the number of columns.
A common surrogate tied different fields of a tuple across tables.

There are now as many tables as the number of attributes. This
storage model has been implemented in the Monet System which
also developed an algebrato hide the decomposition [4]. An early
work [16], donein the context of database machines, also explored
the option of storing table data on a per attribute basis. This rep-
resentation has also been used in the IBM’s Enterprise Directory
LDAP product [19].

Another aternative would be to create one separate table for
each category. Yet another aternative would be to create one ta-
blefor common attributes and per category separatetablesfor non-
common attributes. See[7] for someother aternatives and aperfor-
mance study done in the context of storing XML data. Messaging
systems such as Lotus Notes and Microsoft Exchange have also
devel oped specialized structures to support sparse rows containing
optional columns. However, there is no support for SQL querying
in these messaging systems.

We will focus on the 3-ary representation of data as outlined
in Section 1.2 (henceforth referred to as vertical representation).
This representation offers an interesting design point between the
conventional n-ary horizontal representation (henceforth referred
to as horizontal representation) and the 2-ary binary representation
(henceforth referred to as binary representation). Like the hori-
zontal representation, the vertical representation requires only one
table to store data, whereas the binary representation splits the ta-
ble into as many tables as the number of attributes. While there
are applications (e.g. SAP) that store data across alarge number of
tables, having thousands of tablesinstead of one makesthe system
harder to manage and operate. Schemaevolution istrivial with the
vertical representation, whereas an addition (deletion) of a new at-
tribute requires “ altering” the table in the horizontal representation
and an addition (deletion) of a table in the binary representation.
On the negative side, the vertical representation loses data typing
sinceall valuesare stored as VARCHARsin the Val field, although
it is easy to design extensionsto support datatyping if desired?.

Thehorizontal representationis well studiedin the databaseliter-
ature and there has been excellent work in understanding the trade-
offs of the binary representation [4] [5] [9]. Because of its man-
ageability and flexibility, the the vertical representation is increas-
ingly finding its way in many commercial systems. It behoovesthe
database community to investigate and study how best to support
the vertical representation to bring the new emerging applications
toitsfold. Thework we presentisastep in this direction that com-
pliments earlier work.

1.4 Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we
discuss rewriting of the queries from the horizontal format to ver-
tical format. We discussthe implementation strategiesin Section 3
and give performance results in Section 4. We conclude with a
summary and some pointers for the database system practitioners
in Section 5. We also refer the reader to the extended version of this
paper [3] that contains additional explanationsand performancere-
sults.

2 Create aseparatevertical tablefor every datatype. A catalogtable
maintains data type information for each attribute. Thuswe might
have a scheme as shown below:

ATTRIBUTES (KEY CHAR(X) PRIMARY KEY,
DATATY PE CHAR(N)):;

V_INT(OID INTEGER, KEY CHAR(X), VAL INTEGERY);
V_FLOAT(OID INTEGER, KEY CHAR(K), VAL FLOAT);
V_VARCHAR(OID INTEGER, KEY CHAR(X), VAL
VARCHAR(X));

2. TRANSFORMATIONS

Our overall approach is to define a horizontal view H over a
vertical table V. Theuser posesregular SQL queriesover thisview,
which are translated into queries that run against the underlying
vertical table. We will describe these transformations in terms of
an extended algebrain this section. In Section 3, we discuss their
implementation in a SQL system.

2.1 Algebra

Westart with thewell-understood al gebraic operations[6]: select(s),

project(w), join(><), outer join(J<C), left outer join(T), right
outer join(e<C), cross product(x), difference(—), intersection(N),
union(U), and aggregation(F). We add two operationsto this alge-
bra: v2h(€2) and h2v(U). We define the semantics of these opera-
tions after briefly introducing afew notations.

Notation

Assume that the vertical table V' hasthe scheme (Oid, Key, Val)
with a non-nullable column O:d andthat A1, ... , An arethekey
values in V. The equivalent horizontal table H has the scheme
(0:4d, A1, ..., An) with the column Oid being non-nullable. We
use Ak+m to represent the (k+m)*" attribute. The symbol L rep-
resentsanull value.

Wewill use®%_, ¥, asashort handfor ¥, 0¥, - .- ©F,. Fora
join operation (including its outer species), unlessotherwise stated,
assume the join predicate to be the equality of Oid. An explicit
join predicate ¥ will be specified as pq.

Sometimes we will use $0, $1, etc% to refer to the columns of a
result table.

For visua clarity, we will sometimes add square brackets in an
expression as shown below.

[T0] © [0:21 L]

These square brackets do not affect the order of evaluation in any
way; they are there only to enhancereadability.

v2h Operation

Intuitively, the v2h(£2) operation takesasinput avertical table and
alist of attribute names and returns a horizontal table with those
attribute names as the column labels.

QF (V) createsahorizontal table of arity k-+1 whosefirst column
is Oid and the first & key values form the rest of the k columns®.
The content of the table is defined by:

QN (V) = [row(V)] 3=
[Zl><1f=1 T oid, Val(Ogey=a:' (V)] D

Because of the first term on the right hand side and the use of |eft
outer join, Eq. 1 can yield tuples with nulls in al of the non-Oid
columns. For example, Q2 applied to the vertical table V' from
Figure 1 results in the table shown in Figure 2. For Oid =3, V
does not contain tuples corresponding to key values A1 and A2.
However, the result table contains a tuple with this Oid and null
valuesfor attributes A1 and A2.

This semanticsis consistent with the null handling in SQL. For
instance, a projection of the horizontal table in Figure 1 on at-
tributes A1 and A2 will indeed preserve the tuple corresponding
to 0id =3in SQL.

®Since the columns in a relation are supposed to be orderless,
strictly speaking © should take column names as parameters. We
have chosen this notational simplification for ease of exposition.

U*(H

02(V $O| $1 | $2
$0 | $1 | $2 1Al a
l1]al|b 1|A2| Db
2| L}|c 2 |A2]| ¢
3| L] L 3| A1| L
4 | b | L 3| A2| L

4 |Al| b

Figure2: Resultsof v2h and h2v Operations

But for null handling, which was not discussed, the v2h opera-
tionis equivalent to Unfold by Key on Val (V) in SchemaSQL [11].
This operationis also similar to the Gather operationin [18].

h2v Operation

The h2v(U) operation is the inverse of the v2h operation. Intu-
itively, it takes as input a horizontal table and converts it into a
vertical table where each column label in the horizontal table is
converted to akey value in the vertical table.

Assumeahorizontal table H havingthescheme(0id, A1, ... , An)

with the column O:d being non-nullable. U*(H) creates a verti-
cal table with the scheme (0id, Key, Val). The content of V is
defined by:

Uk(H) = [Uf=1 Toid, ai',4i(Tai 2z 1 (H))] U
[Uf:1 Wold,‘Az",Ai(U/\f:lAi -u(H) @

For each tuple h in H, the first term in Eq. 2 creates the tuples
{< 0id,*A?,h.Ai > |i=1,..,k A h.Ai # 1}. Thesecond
term handles the special case of a horizontal tuple that has null
valuesin al of the non-Oid columns. Figure 2 shows the result of
applying U? to the horizontal table H from Figure 1.
Again, but for null handling, this operation is equivaent to

Fold by Val on Key(V) in SchemaSQL [11]. Thisoperation isaso
similar to the Scatter operationin [18].

2.2 Rewritings

We describe now the rewritings of the standard algebraic oper-
ations on the horizontal view over a vertical table. We give two
forms of rewritings. onewith and the other without using the v2h
operation. The former can be used on a SQL-92 system whereas
the latter can exploit the implementation of v2h operation using
the object-relational extensions. See [3] for illustrative examples
of these rewritings.

Projection

Let the projection be on attributes A1, ... , Ak. We have, from the
definition of the v2h operation:

mar,.. ax(H)
= QFV) ©)
= [m0ia(V)] I« [Zl><lf=1 oid, val(Oey=' 2/ (V)] (4)

Sdlection

We discusstheusual caseof aselection followed by projection. Let
the selection predicate be A%, (A3 8 ‘as’) and the projection be on

thefirst k + m attributes, m > 0.
TAL,.. ,Ak+m(‘7/\’;=1m' 6 ait (H))
= Ta1,.. ,Ak+m(0/\§=1m‘ & ‘m"(QHm(V))) (5
= T$1,.. ,$k+m(
[ﬁle T0id(OKey=as' Aval 6 ‘as' (V)]
I [j><1f:'1m T 0id, Val (T gey=a:' (V))]) (6)
A disiunctive selection

TAL,... ,Ak+m(UV§=1A¢ 6 ‘a,i’(H))

can be transformed by replacing theintersection N%_; in Eq. 6 with
theunion U%_, .

Join

Take a horizontal table H having the scheme (0id, A1, . .. , An)

whichisreally alogical view over avertical table V. Itsjoinwith a

true horizontal table RH havingthescheme(R1, ... , Rr) isgiven
by:
TAL,.. Ak Rk+1,.. Rkt+m(H B> RH)
Ak_ 4i6 Ri
= ma1,. Ak Rk, RBE+m(Q5(V) B RH) (7)
Ak_ Ai6 Ri
= 73$1,... $k,RE+1,. .. ,Rk+m(
[Mle WOzd,Val(O'Keyz‘Ai’(V))] > [RH])(8)
A’::1$i:Ri
Aggregation

We use thefollowing notation from [6] to specify aggregation:

Grouping attributes 7 Function list (Table name)

Function list consists of (function, attribute) pairs, where func-
tion can be one of the allowed aggregate functions such as SUM,
COUNT, AVG, MAX, and MIN. The transformations are:

A, 4k F r oars1 (H)
Atk F roarsr (Q5(V)) 9
$1,.. 8k J P $kt1
(7 0ia(V)] 24 [32 1 701, vat (T kcey= a0 (V))]) (10)

For aggregate functions, SUM, MIN, and MAX, which are un-
affected by null valuesin the column being aggregated, Eq. 10 can
be simplified to:

ar,.. Ak F r oaryr (H) =

$1,... $k Fr $k+1(:|><Cf=1 WOzd,Val(UKeyfAi’(V))) (11)

Set Operations

The set operationscrossproduct(x), union(U), intersection(N), and
difference(—) can be transformed by first applying the v2h opera-
tion on the vertical table(s) and then carrying out the desired oper-
ation.

Updates

Updatesare easy. Insertion requires decomposing a data object into
a set of attribute name and value pairs and inserting them into V'
with acommon Oid. A predicate-based del etion requires determin-
ing the Oid set of objects satisfying the predicate and deleting the

corresponding tuples from V. An update resultsin a change of the
valuefield in sometuplesin V. It can aso cause some insertions
and deletions.

Output

There may be need for transforming the result of an operation in-
volving avertical tableback into the vertical format (e.g. for storing
the result). This can be accomplished by applying the h2v opera-
tion on the result table.

3. IMPLEMENTATION

With the algebra described above in hand, we are in a position
to develop anon-intrusive enablement layer on top of the database
engine that hides from the user (application) the vertical table. A
horizontal view H is defined for the vertical table V' using an ex-
tended DDL.:

CREATE HORIZONTAL VIEW H ON
VERTICAL TABLEV USING COLUMNS (4;, A, ..., Axn)

where A;-1, represent attribute names (keys) in the vertical table.
The DDL is generated by the enablement layer. The user poses
regular SQL queries over the view. The enablement layer parses
the SQL query, validatesit, and transformsit to another SQL query
that runs against the underlying vertical table. It usesaquery graph
structure to facilitate this trandation.

We consider three transformation strategies.

3.1 VerticalSQL

Thisimplementation assumesonly the SQL-92 level capabilities
from the underlying database engine. The enablement layer uses
the second set of equations for translating each of the algebraic
operations given in Section 2 for this implementation. See[3] for
an example.

3.2 VerticalUDF

This implementation attempts to exploit object-relational exten-
sions to SQL, particularly the user-defined table functions. The
underlying engineis extended with the table functionsfor v2h and
h2v operations. Thev2h table function readstuples of vertical ta-
ble sorted on Oid and outputs a horizontal tuple for each Oid. The
h2v table function takes as input column names and a horizontal
tuple and splitsit into vertical tuples.

The enablement layer uses the first set of equations for trans-
lating each of the algebraic operations given in Section 2 for this
implementation. For example, the projection query:

SELECT A1, A2 FROM H
istrandlated into*:

SELECT t.Attrl, t.Attr2

FROM V v , TABLE(v2h(v.Oid, v.Key, v.Val)) AS t(Qid,
Attrl, Attr2)

WHERE v.Key="A1’ or v.Key='"A2'

The query appears to be a Cartesian product between the vertical
relation V' and the table function v2h. What happensin effect is
that the relevant fields from any qualifying tuple v after applying
the select predicates on the V' table are passed as parametersinto
the v2h function, which in turn produces horizontal tuples ¢ from
which the fieldsin the select list are extracted.

The v2h table function requires v tuples to be streamed in the
Oid order so that it can buffer the key-value pairs until the Oid

“The actual translation is more complex and includes an additional
clausein thejoin list for selecting distinct Oid’sfrom V.

changes. At that point, it can output the tuple corresponding to the
horizontal view. Unfortunately, the current SQL syntax does not
allow the specification of the order in which the tuples should be
streamed into a table function and that causes problems. Note that
agood plan for the above query will push down the Key predicates
on Al and A2 so as to select only the relevant tuples from the
V relation. However, the output of this selection would generate
tuples in Key or physical row-id order which is different from the
Oid order required for v2h.

A workaround this problem is to introduce a join of the tuple
stream produced by the selection with a table of Oid's and cgjole
the optimizer to pick a merge sort join plan, thereby forcing a sort
on Oid. By introducing this join and adjusting the optimization
level for the the DB2 query optimizer, we could generate the cor-
rect plans. We were able to play similar tricks for other algebraic
operations.

3.3 SchemaSQL

This implementation employs the non-intrusive strategies pro-
posed for the SchemaSQL implementation [11]. Specifically, we
implemented unfold | and unfold |1 strategies®. These strategies re-
sult in SQL trandations that are different from the ones given in
Section 2. See[3] for details.

4. PERFORMANCE EXPERIMENTS

We now present the results of our extensive experimentsto study
the performance of the alternative implementations of the enable-
ment layer just described. We includein this study the performance
comparisonwith the horizontal representation aswell asbinary rep-
resentation discussed in Section 1.3. They will be referred to as
Horizontal SQL and Binary respectively.

4.1 Experimental Setup

All experiments were run on a 600 MHz dua processor Intel
Pentium machinewith 512 MB of physical memory. The operating
system was Windows NT 4.0 and the database system used was
DB2 UDB 7.1. The machine had two 30GB IDE drives. Data was
placed on onedisk and the temporary table spacesand the logswere
created on the other. The buffer pool size was set to 50MB and the
prefetch sizeto 512K B.

To study performance characteristics over a wide range of op-
erating regions, we used synthetic data that allowed usto vary the
following parameters:

¢ Number of columnsin the horizontal table

¢ Number of rowsin the horizontal table

¢ Non-null density (i.e. percentage of field valuesthat are not
null

. Sele)ctivity of apredicatefor each column

¢ Number of distinct valuesin each column

¢ Sizeof each column

Given aset of these parameter values, we first generated datain the
horizontal format and then transposed it into its equivalent vertical
and binary formats. We kept the size of atable (number of rows x
number of columnsin arow) constant by adjusting the number of
rows aswe varied the number of columns. See[3] for details of the
data generation algorithm.

We generate the following schemes for horizontal, vertical, and
binary tables respectively:
®[11] proposed another strategy, called unfold |11, which avoids the
cost of creating temporary tables incurred by unfold | and unfold
I1. However, as pointed out in [11], anon-intrusive implementation
of unfold 111 turns out to be less efficient than unfold | due to the
tuple-at-a-time nature of the implementation.

Project

density = 10%

D
o

o
o
I

B
o

N
o
L

=
o
L

Execution time (seconds)
w
o

o
I

200x100K 400x50K 1000x20K

800x25K

Table (#cols x #rows)
Join

density = 10%, 1000 cols x 20K rows

N
[$)]

N
o

=
o
L

o
I

)
)
T

o

0.1% 1% 5%
Join selectivity

VerticalSQL_oid M VerticalSQL_key

Figure 3: Clustering by Key versusOid

H (OID INTEGER, AOVARCHAR(X), ALVARCHAR(X).. ..,
AnVARCHAR(X))

V (OID INTEGER, KEY CHAR(X), VAL VARCHAR(X))
TAB_A;7 (OID INTEGER, VAL VARCHAR(X))

where X is the size in number of bytes (set to 16) and K is the
size of thekey field (set to 5). Therewere n binary tablesTAB_Aj
corresponding to » columnsin H. The queries for various oper-
ations were generated using the additional parameters such as the
columnsinvolved in the operation and selectivities.

4.2 Layout

The datafor horizontal aswell as binary tableswas clustered by
Oid. For the vertical table, we have two choices for the physical
layout: i) cluster by Oid, or ii) cluster by Key. We performed ex-
tensive experiments and found that clustering by Key consistently
resulted in much higher performance than clustering by Oid. Fig-
ure 3 shows the performance of clustering by Key versus Oid for
projection and join operations. The settings for these experiments
are exactly the same as used for experiments reported later in the
paper in Figures 4 and 7 respectively. We have not included those
graphs, but we found large gaps in performance for selection as
well as aggregation operations.

To understand this performance difference, let us consider the
projection operation. The SQL translation of the projection op-
eration corresponding to the algebraic transformation presented in
Eq. 4 in Section 2 contains selection predicates on Key values. Af-
ter applying the selection predicate using an index on the Key col-

umn, the qualifying tuples are fetched. If the datais physicaly laid
out in the Key order, we get the benefit of clustered 1/O. If, on the
other hand, the data is clustered by QOid, fetching the tuples results
in unclustered 1/0 which is very inefficient.

4.3 Indices

Every column involved in a query on the horizontal table was
indexed. We also indexed both the columns of every binary table.
For the vertical table, we indexed each of the three columns.

Note that we end up indexing the entire data in the vertical ta-
ble. Contrast this to the case of the horizontal table where just the
columns involved in the typical query workload are indexed. We
found that the total size of the indices for vertical table was typ-
ically two orders of magnitude larger compared to the horizontal
indicesand large portionsof the vertical indiceswere not useful for
any of the queries. Having large indices adversely impacts the per-
formance of the vertical representation because of the time spent
in loading the indices and the increasein path length dueto deeper
index trees. It would have helped if the database supported partial
indices[20] that allow only the rows of interest to be indexed.

4.4 Performance Results

We now summarize theimportant results from avery large num-
ber of experiments we performed. We will present the results for
project, select, join and aggregation operations. We flushed buffer
pool, main memory and file system cache before the start of each
run to get cold start numbers.

We will report the performance of a single operation at a time
in order to isolate the trade-offs for each operation. Of course, a
typical database query contains a combination of operations. We
ran several such composite queries but did not find any trend we
could not predict having understood the trade-offs for individual
operations.

We found the implementations using the SchemaSQL strategies
performed 2-3 times slower compared to Vertical SQLS. The cul-
prit was the creation of alarge number of intermediate temporary
tables, a problem recognized by the implementors of SchemaSQL
[11]. We therefore do not include the SchemaSQL numbersin the
results.

In the initial set of results, we include numbers for Horizontal -
SQL, VerticaSQL and Binary. Later in Section 4.5, we present
resultsthat areindicative of the performanceachievablefrom aVer-
tica UDF implementation.

Projection

Figure 4 shows the performance of various strategies for the pro-
jection operation. The number of projected columnsis 10, thereby
requiring 10-way joins with the Binary and Vertical SQL strategies.
In each graph, the execution times are shown for four horizontal
tables and their equivalent vertical and binary tables. The horizon-
tal tables differ in the number of rows and columns but their total
size (#rows x #columns) is kept constant. The number of rows de-
creases aswe move from |eft to right in the graphs (which explains
the reduction in the execution time for all the strategies). We show
graphsfor non-null density p = 5% and 10%.

Thesurprising result from these experimentsis that Vertical SQL
uniformly outperforms Horizontal SQL in spite of requiring multi-
plejoins. Thesuperior performance of Binary over Horizontal SQL
reconfirmsthe resultsin [4] [7] [9].

The reason for the relative poor performance of the horizontal
format is that the whole tuple needs to be fetched before the rel-

®This observation should not be construed as a negative statement
against SchemaSQL, which addressesa more general problem.

(o]
o

2
2 40 |
o
[8]
? %
< 30
()
E
c 20
=)
3
o 10 4
>
’ [l | 5l
o
200x100K 400x50K 800x25K 1000x20K
Table (#cols x #rows)
(p =10%)
50
w
o 40 % %
c
o
(8]
g SHl=
£ 30
] —
£ —_—
= F
c 20 1=
o —
= —
=] —
(3} —
$ 10 H
w —
—_—
= - | &l
o I
200x100K 400x50K 800x25K 1000x20K
Table (#cols x #rows)
B HorizontalSQL I VerticalSQL ElBinary

Figure 4: Projection performance (10 cols)

evant fields can be extracted. There is additional cost of finding
where the relevant fields for a tuple lie on a page, which can be
substantial for a wide tuple with a large number of fields. In the
case of avertical table, the index on the Key field alows only the
tuples corresponding to attributes participating in the projection to
be retrieved. Thenet is adecreasein total 1/0.

Between Binary and Vertica SQL, Binary performs slightly bet-
ter. A tuplein the binary representation contains only the attribute
value, whereas a tuple in the vertical representation contains both
attribute name (key) and value. Thus, the total 1/0 will be less
in the binary scheme. Moreover, the vertical scheme requires an
additional selection on the key field for locating tuples having the
desired attribute name, which is not needed in the binary scheme
sinceit has a separatetable for each attribute. Later in Section 4.5,
we see how the performance of the vertical scheme can be made
better than binary by using the Vertica UDF implementation.

Figure 5 showsthe effect on performance as the number of pro-
jected columnsis varied. The experiments were run for the dataset
1000 x 20K and for non-null densities p = 5% and 10%. Therel-
ative performance of the various strategies remains the sameasin
the previous experiments when number of projected columns was
fixed at 10 (Figure 4).

We see that the performance of HorizontalSQL is insensitive to
the number of projected columns. Thistrend can be understood by
recalling that when the tuples are wide, the projection performance
in the horizontal scheme is dominated by the cost of fetching tu-

(p =5%)

40

w
k=]
c
o
(8]
[}
L
(4]
E
<
e
5
(]
7]
X
) lEs
5 10 20 40
Number of projected columns
(p =10%)
40
g = =
©
c
o
(8]
(0]
&L
(0]
E
e
2
5
(8]
[J]
>
: LBl
5 10 20 40
Number of projected columns
B HorizontalSQL M VerticalSQL ElBinary

Figure 5: Impact of varying the number of projected
columns (1000 cols x 20K rows)

ples. The performance of Binary aswell as Vertical SQL improves
as the number of projected columns decreases. Thistrend is quite
understandable since a decrease in number of projected columns
results in adecreasein number of joins these schemes need to per-
form. However, the execution time increases rather slowly as the
number of projected columns increases and Vertica SQL and Bi-
nary continueto outperform the horizontal scheme.

Selection
Selection experiments were run using the following query:

SELECT A40, A200 FROM H WHERE A200 = ‘A200V0’

The experimentswere run for the dataset 1000 x 20K with non-
null densities p = 5% and 10%. The selectivity of the selection
predicate was set to 0.1%, 1% and 5%. Figure 6 showsthe results.

The plan for Horizontal SQL applies the selection predicate on
A200 and then fetches the qualifying tuplesto extract attributesin
the select list. However, since the data is clustered by Oid, this
causes unclustered I/0O of wide tuples, hurting the performance
of HorizontalSQL. As the predicate becomes less selective, the
amount of 1/O increases and the query performance degrades.

Vertical SQL hasto apply a predicate based on the value of 4200
as well as the Key predicate for the projected column A40. The
fetch following the application of the Key predicate on A40 causes
clustered 1/0 while the one following the application of the value

(p =5%)
20
- —
0 —
© —
c 1
o 15 —
9 —
(7] —1
) —
—
<] —
£ 10 A —
= — 1
c —
9 —
5 5 —
9 1 —
(9] — — 1
b — —
Sl e
0.1% 1% 5%
Selection selectivity
(p =10%)
20
w
=
S 15
(&)
3]
)
Q %
E 10
<
9
3 5
] —
> —]
NI= =l H H
—
. =l Al £888S
0.1% 1% 5%
Selection selectivity
B HorizontalSQL I VerticalSQL ElBinary

Figure 6: Selection performance (1000 cols x 20K
rows)

predicate on A200 causes unclustered 1/O. It then sorts each of
these streams on Oid to do the join. However, since the tuples are
narrow, Vertica SQL ends up performing better than Horizontal-
QL.

For Binary, the optimizer chooses a table scan for the A200 ta-
ble, followed by a sort, and a merge sort to join it with the A40
table. Since a table scan was chosen instead of an index scan, we
do not see much effect of selectivity on the query execution time.
Because of smaller indicesand narrower tuples, Binary performs a
little better than Vertical SQL.

Join
For this set of experiments, we joined H with ahorizontal table HR
whose schemewas:

HR(A1 VARCHAR(16), A2 VARCHAR(16))

HR has p x H rows, each of which has no null value. Thejoin
query was:

SELECT h1.A40,h2.A2 FROM H h1, HR h2WHERE h1.A1=h2.A1

All the columnsinvolved in the query were indexed.

The experiments were run for the dataset 1000 x 20K with non-
null densities p = 5% and 10%. Thejoin selectivity was set to 0.1%,
1% and 5%. Figure 7 showsthe results.

Both Binary and Vertical SQL considerably outperform Horizon-
talSQL, with Binary performing alittle better. Thejoin selectivity

(p =5%)

N
o

=
ol

ol

Execution time (seconds)
B
o

= S B

0.1% 1% 5%
Join selectivity

(p =10%)

20
w
©
S 15 —
@
&
()
E 10
=
=)
3 5 —
2 —
w —

=) e = e (=

0.1% 1% 5%
Join selectivity
B HorizontalSQL M VerticalSQL ElBinary

Figure 7: Join performance (1000 cols x 20K rows)

did not exhibit much affect on the performance of Binary and Verti-
cal SQL. Thequery plansfor both first computeahorizontal relation
consisting of attributes Oid, A1 and A40. For Vertical SQL, thisin-
volves selection on the key predicates, fetching the tuples, sorting
them on Oid, and doing amerge sort join. For Binary, the selection
on the key predicateis not required since each attribute hasits own
table (which explains the slight performance advantage). It there-
fore only requires fetching the tuples and joining them on Oid. For
both the schemes, this interim result is then joined with the HR ta-
ble using a merge sort join. It is only this last step that is affected
by the join selectivity. Since the cost of entire plan is dominated
by the I/O required to fetch the input tuples as opposed to the final
join, hence the execution time is not significantly affected by join
selectivity.

The plan for the Horizontal scheme involves a nested loop join
with the HR table as the outer and an index scan on the join col-
umn in the inner H table. However, since we have an additional
columnin the select list, afetch on theinner table does unclustered
1/0 to get the tuples (H is clustered on Oid). Thisunclustered 1/0
of wide tuples result in the poor performance of Horizontal SQL.
The amount of 1/0 dependson the number of tuplesin H that join.
Hence the query performance degrades with increasing join selec-
tivity.

Aggregation

We measured aggregation performanceby using thefollowing query:

40

w
o
L

.
o
!

Executiont time (seconds)
N
o

5% 10%
Density

B HorizontalSQL I VerticalSQL ElBinary

Figure 8: Aggregation performance (1000 cols x 20K
rows)

SELECT A500, AVG(LENGTH(A0Q)) FROM H
GROUP BY A500

The experiments were run for the dataset 1000 x 20K with non-
null densities p = 5% and 10%. The number of groupsin the result
was 100 for both densities. The average number of tuples processed
per group was 10 and 20 for densities p = 5% and 10% respectively.
Figure 8 showsthe results.

Horizontal SQL needsto fetch the entire tupleto extract thefields
required in the aggregation computation. The horizontal tuples be-
ing wide, Horizontal SQL takes the performance hit of fetching a
large number of unnecessary fields. The query cost isdominated by
the 1/O, not by the computation of the aggregation function. Hence
we do not see much difference in performance as the density of
the data increases (which mostly increases the aggregation func-
tion computation cost but affectsthe 1/0 marginally).

Vertical SQL and Binary have comparable performance, with Bi-
nary performing marginally better. The query plans for both the
strategies are similar to doing a projection of 2 columns (a v2h
operation), followed by the computation of the aggregation func-
tion. However, the execution time of the query is dominated by the
1/0 time to implement v2h and therefore we only see a marginal
increasein execution time as the density increases.

4.5 Exploitingthe Object-Relational Features

We saw from the performance results just presented that Verti-
calSQL uniformly outperforms Horizontal SQL but slightly under
performs Binary. We show in this section that with a little better
support from table functions, the Vertical UDF strategy can outper-
form Binary. Vertica UDF can avoid multi-way joins Vertical SQL
performs to assemble the attribute values of a tuple. What needs
to be ensured is that the relevant tuples from the vertical table are
streamed into the v2h table functions in the Oid order. The table
function then can do the assembly and output the horizontal tuple.

Let usfirst consider the projection operation. Figure 9 compares
the performance of Vertical UDF to Binary and Vertical SQLfor the
same datasets asin Figure 4. We show the graph for p = 10%; the
performance advantage of Vertical UDF was relatively larger for p
= 5%. The performance numbers for Vertical UDF were obtained
after adding all the contortions described in Section 3.2 for forcing
the tuples to stream into the v2h table function in the Oid order.
Thus, the performance numbersfor Vertica UDF should be viewed
astheworst-case numbers. In spite of the unnecessary performance

(p =10%)

30

w
k=]
c
o
® 20 -
&L
(4]
E
c
2 10
35
(]
7]
X
n}

0 i

200x100K 400x50K 800x25K 1000x20K
Table (#cols x #rows)
M VerticalSQL ElBinary M VerticalUDF

Figure 9: Projection performance (Projection of 10
cols)

(p =10%)

Execution time (seconds)

1% 5%

Join selectivity

M VerticalSQL ElBinary M VerticalUDF

Figure 10: Join performance (1000 cols x 20K rows)

penalty, Vertical UDF, performs uniformly better than both Binary
and Vertical SQL. The main reason for this performance win is the
avoidance of multi-way joins present in Binary and Vertical SQL.
Now consider the join query used in the performance evaluation
in Section 4.4. Figure 10 shows the performance of Verticad UDF,
Vertical SQL, and Binary for the same datasets and join selectivi-
tiesasused in Figure 7. For executing this query using the Verti-
ca UDF strategy, we would like to first apply the select predicates
on the key columns prior to streaming the tuples in the Oid or-
der into the table function. However, as discussed earlier, there is
no way to specify this order on the output of the select operation.
The workaround again is to create an additional artificial join on
Oid’s and trick the optimizer into choosing a merge-sort plan for
thisjoin, thereby creating atuple stream sorted on Oid. The perfor-
mance numbersfor Vertical UDF, therefore, should again beviewed
as the worst-case numbers. It is remarkable that the performance
of Vertica UDF comes so closeto Binary in spite of al the unnec-
essary overhead. Also, in atypical query, joins are often followed
several projections. The performance gain in the projection opera-
tion alows Vertica UDF to outperform Binary for such composite

queries. We found similar issuesfor selection and aggregation.

Wewould like the table function to be ableto control theorder in
which input arguments are supplied to it. The need for such facil-
ity has been identified for other applications also [18]. If the table
function syntax is extended with thisfeature and the optimizer takes
advantage of it, we would avoid the performance penalty of intro-
ducing additional operationsjust to force the desired order on input
arguments. In that case, we expect Vertica UDF to outperform the
other strategies.

5. CONCLUSIONS

Emerging applications such as e-commerce and portals are cre-
ating new threats and opportunities for database technology. The
prevalent conventional horizontal representation is optimized for
applicationsin which the datais dense and evolves slowly. The new
generation of applications require data schemas that are rapidly
evolving and sparsely populated.

To meet the requirements of these applications, many commer-
cia software systems have converged on a 3-ary vertical represen-
tation for storing objectsin atable. This paper recounts our expe-
rience from building an e-marketplace using this vertical scheme
for representing data. The application was built using IBM Web-
sphere Commerce Server running on top of DB2. Our two main
contributions are:

¢ Design of an enablement layer that hides the complexity of
the queries over the vertical table and gives a horizontal view
of the vertical representation to the user (application). We
provide transformation algebra and techniques for its non-
intrusive implementation on top of a SQL database system.

¢ A thorough investigation of the performancetrade-offs of the
vertical representation and a comparison of its performance
with the horizonal and binary (2-ary) representations. The
key results are:

— The performance of the vertical representation is sensi-
tive to the choice made for clustering the data. Cluster-
ing on Key has much higher performance than cluster-
ing on Oid.

— The vertical representation uniformly outperforms hor-
izontal representation for sparsedata (in spite of the ex-
tremely efficient representation of null valuesin DB2).

— The performance of the vertical representation using
only the SQL-92 capabilities is comparable to the bi-
nary representation, the latter performing a little bet-
ter. By using table functions, the vertical representation
starts performing better than binary for the projection
operation. If the table function could provide some ex-
trafunctionality (see below), the vertical representation
can outperform binary representation for other opera-
tions also.

The mgjor arguments in favor of the vertical representation
have been its flexibility in supporting schema evolution and
manageability (singletable versusas many tablesasthenum-
ber of attributes in the binary scheme). Based on the results
of this study, we can provide the following matrix for com-
paring the three representations:

We finally giveawishlist of the capabilitieswewould like from
the database system to be able to further enhancethe performance
of the vertical representation:

Horizontal Vertical Binary

Manageahility + + -
Flexibility - + -
Performance - + +

Partial indicesWe create anindex on each of the three columns
of the vertical table. In the process, we end up indexing the
entire datain the vertical table. Having database support for
partial indices[20] that allow only the rows of interest to be
indexed will help improve the performance of the vertical
representation.

Enhanced table functions The table function syntax needsto
be extended with additional clauses to specify the required
order of input arguments. This facility is critical for bene-
fitting from the v2h table function for assembling attribute
valuesfrom the vertical table into a horizontal tuple without
performing multiple joins.

First class treatment of table functions Table functions are
currently not treated as first class objects during the query
optimization phase. Current systemsdo not allow table func-
tionsto register the ordering of tuplesthey receive, the output
cardinality, or the order property for the tuples they produce.
Because of these limitations, optimizers often produce less
than optimal plans for executing queries that include table
functions.

Native support for v2h and h2v operations Since v2h and
h2v operations are fundamental primitives for the efficient
execution of queriesover vertical table, they should be sup-
ported natively by the database system for best results.

Acknowl edgments

We wish to thank Jay Shanmugasundaram for providing us the
XQGM code, which we used in the enablement layer to represent
parsed queries.

6.
(1]

(2]

(3]

[4]

(5]

(6]

REFERENCES

Storing RDF in arelational database.
http://www-db.stanford.edu/ melnik/rdf/db.html.

R. Agrawal, R. Bayardo, D. Gruhl, and S. Papdimitriou.
Vinci: A service-oriented architecture for rapid development
of web applications. In WWW10, Hongkong, May 2001.

R. Agrawal, A. Somani, and Y. Xu. Storage and Querying of
E-Commerce data. Research report, IBM Almaden Research
Center, San Jose, CA 95120, June 2001. Available from
http://ww. al maden. i bm coni cs/ quest .

P. Boncz and M. Kersten. MIL primitives for querying a
primitive world. VLDB Journal, 8(2):101-119, October
1999.

G. P. Copeland and S. Khoshafian. A decomposition storage
model. In Proceedingsof the 1985 ACM SSGMOD
International Conference on Management of Data, Austin,
Texas, May 28-31, 1985, pages 268-279.

R. Elmasri and S. B. Navathe. Fundamental of Database
Systems. Benjamin/Cummings, Redwood City, Cdifornia,
1989.

D. Florescu and D. Kossman. A performance eval uation of
alternative mapping schemesfor storing XML datain a
relational database. Technical report, INRIA, France, May
1999.

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

Internationl Business Machines. IBM Intelligent Miner
User’'sGuide, Version 1 Release 1, SH12-6213-00 edition,
July 1996.

S. Khoshafian, G. P. Copeland, T. Jagodis, H. Boral, and

P. Valduriez. A query processing strategy for the
decomposed storage model. In Proceedingsof the Third
International Conference on Data Engineering, February
3-5, 1987, Los Angeles, California, USA, pages 636-643.

R. Krishnamurthy, W. Litwin, and W. Kent. Language
features for interoperability of databaseswith schematic
discrepancies. In Proceedings of the 1991 ACM S GMOD
International Conference on Management of Data, Denver,
Colorado, May 29-31, 1991, pages 40-49.

L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. On
efficiently implementing SchemaSQL on an SQL database
system. In Proceedingsof 25th International Conferenceon
Very Large Data Bases, September 7-10, 1999, Edinburgh,
Scotland, pages 471-482.

L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian.
SchemaSQL — alanguagefor querying and restructuring
multidatabase systems. In Proceedings of 22nd I nternational
Conferenceon Very Large Data Bases, September 1996,
Bombay, India.

W. Litwin and A. Abdellatif. Multidatabase interoperability.
IEEE Computer, 19(12):10-18, 1986.

R. J. Miller. Using schematically heterogeneousstructures.
In SGMOD 1998, ProceedingsACM SSGMOD International
Conferenceon Management of Data, June 2-4, 1998, Seattle,
Washington, USA, pages 189-200.

M. Minsky. A framework for representing knowledge.
Technical Report MIT-Al Laboratory Memo 306,
Massachusetts Institute of Technology Artificial Intelligence
Laboratory, June 1974.

M. Missikoff. A domain based internal schemafor relational
database machines. In Proceedings of the 1982 ACM

S GMOD International Conferenceon Management of Data,
Orlando, Florida, June 2-4, 1982, pages 215-224.

K. A. Ross. Relations with relation names as arguments:
Algebraand calculus. In Proceedingsof the Eleventh ACM
S GACT-S GMOD-S GART Symposiumon Principles of
Database Systems, June 2-4, 1992, San Diego, California,
pages 346-353.

S. Sarawagi, S. Thomas, and R. Agrawal. | ntegrating
association rule mining with relational database systems:
Alternatives and implications. Data Mining and Knowledge
Discovery, 4(2/3), July 2000.

S. Shi, E. Stokes, D. Byrne, C. Corn, D. Bachmann, and

T. Jones. An enterprise directory solution with DB2. IBM
Systems Journal, 39(2):360-383, 2000.

M. Stonebraker. The casefor partial indexes. SGMOD
Record, 18(4):4-11, 1989.

M. Wang, B. R. lyer, and J. S. Vitter. Scalable mining for
classificationrulesin relational databases. In IDEAS 1998,
pages58-67.

