
Storage and Querying of E-Commerce Data

Rakesh Agrawal Amit Somani Yirong Xu
IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120
fragrawal,asomani,yirongxug@us.ibm.com

ABSTRACT
New generation of e-commerce applications require data schemas
that are constantly evolving and sparsely populated. The conven-
tional horizontal row representation fails to meet these require-
ments. We represent objects in a vertical format storing an object
as a set of tuples. Each tuple consists of an object identifier and
attribute name-value pair. Schema evolution is now easy. How-
ever, writing queries against this format becomes cumbersome. We
create a logical horizontal view of the vertical representation and
transform queries on this view to the vertical table. We present
alternative implementations and performance results that show the
effectiveness of the vertical representation for sparse data. We also
identify additional facilities needed in database systems to support
these applications well.

1. INTRODUCTION
Imagine you run a marketplace for the electronics industry. This

marketplace consolidates information about parts from more than
1000 manufacturers and distributors. Your current catalog contains
nearly 2 million parts classified into 2000 categories. There are
more than 5000 part attributes across various categories. New sup-
pliers are expected to join your marketplace every week. They
bring with them new parts, causing new attributes to be added to
the current categories and new categories to be added to the cata-
log. You have the enviable task of designing the back-end database
system to support this marketplace. What do you do?

We found ourselves in this quandary while building such an ex-
perimental marketplace, called Pangea. In this paper, we summa-
rize our experience from implementing this application with the
hope that our observations will be useful to system developers inter-
ested in providing effective database support to e-commerce appli-
cations. The issues we faced are pervasive in the new generation of
e-commerce applications, such as on-line shops, exchanges, mar-
ketplaces, and portals, which aggregate data from a large number
of providers. The specific e-commerce software used in our imple-
mentation was the IBM Websphere Commerce Server running on
top of the DB2 Universal Data Base System. However, we believe
our observations are generally applicable.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment.
Proceedings of the 27th VLDB Conference, Roma, Italy, 2001
.

1.1 Issues
In relational database systems, data objects are conventionally

stored using a horizontal scheme. A data object is represented as
a row of a table. There are as many columns in the table as the
number of attributes the objects have. In trying to store all our
electronic parts in one table using this scheme, we ran into the fol-
lowing problems:

� Large Number of Columns The current database systems do
not permit a large numbers of columns in a table. This limit
is 1012 columns in DB2 (also in Oracle), whereas we had
nearly 5000 attributes across different categories.

� Sparsity Even if DB2 were to allow the desired number of
columns, we would have had nulls in most of the fields. In
addition to creating storage overhead1, nulls increase the size
of the index and they sort high in the DB2 B+ tree index.

� Schema Evolution We would need frequent altering of the
table to accommodate new parts and categories. The schema
evolution is expensive in the current database systems.

� Performance A query incurs a large performance penalty if
the data records are very wide but only a few columns are
used in the query.

Similar challenges are faced by those building large repositories
of meta data about documents in a digital library. For instance,
an experimental news portal [2] being built at IBM Almaden pro-
cesses 5-10 thousand news stories every day. For every story, it ex-
tracts a couple of hundred features such as stemmed words, people,
countries, etc. The features are not fixed a priori and new features
emerge as new stories are processed. A conventional horizontal ta-
ble would need more than 100,000 columns to store the data for the
features that have been identified to date and would need frequent
altering to add new columns to accommodate newly identified fea-
tures. Other potential applications of the work reported in this pa-
per include stores for XML [7], RDF [1], KBMS [15], LDAP [19]
and data mining [8] [21].

1.2 Vertical Representation
To address the above problems, many commercial e-commerce

software systems (e.g. IBM Websphere Commerce Server, I2 Tech-
nology, Escalate) define the following 3-ary vertical scheme for
storing objects in a table:

Oid (object identifier) Key (attribute name) Val (attribute value)

Figure 1 shows a horizontal table and its corresponding representa-
tion in the vertical format. The symbol ? represents a null value.

1For fixed-width fields (e.g. INTEGER), the size of a null value
is same as a non-null value. A VARCHAR null value on the other
hand incurs the overhead of only one byte.

Horizontal (H)
Oid A1 A2 A3

1 a b ?
2 ? c d
3 ? ? a
4 b ? d

Vertical (V)
Oid Key Val

1 A1 a
1 A2 b
2 A2 c
2 A3 d
3 A3 a
4 A1 b
4 A3 d

Figure 1: Horizontal and Vertical Table Representations

The vertical table contains tuples for only those attributes that are
present in an object. Different attributes of an object are tied to-
gether using the same Oid. Schema evolution is now easy; simply
add new tuples corresponding to new attributes.

However, once the data is stored in the vertical format, new prob-
lems arise. Writing SQL queries against this scheme becomes very
cumbersome and error-prone. More importantly, the current appli-
cation development tools designed for horizontal format for storing
objects no longer work.

What is needed is a logical horizontal view on top of the vertical
representation of the data and query rewrite algorithms to convert
relational algebra operators from the horizontal view to the vertical
representation. This approach is conceptually identical to the view
mechanism used in the database systems. Note, however, that the
values in the Key field in the vertical format become column names
in the horizontal view. Such higher-order views are not supported in
the current database systems. We also need well-tuned processing
strategies to get good query performance.

This paper describes the enablement layer we built on top of DB2
to realize the above functionality. The algebra and query trans-
formations we developed and the lessons we learned from the ex-
tensive performance experiments should be of interest to database
practitioners interested in providing support to e-commerce and
similar applications. In building this enablement layer, we con-
sciously did not change the database engine code to make our so-
lution portable and time-expedient. However, we did identify some
capabilities we wish the database system had provided. These new
capabilities should be of interest to the database engine architects
and implementors.

There is rich heterogeneous database research literature on trans-
formations between schematically disparate schemas and types of
schematic differences. In [10], Krishnamurthy et al. eloquently
elucidated how data values in one data source may be modeled as
schema (attribute or relation) labels in another. Several languages
have been proposed for querying over schema labels, including [13]
[17] . There is also work on defining higher-order views for inte-
grating heterogeneous data sources [10] [12] [14].

Closest to this paper is the interesting work presented in [11] on
the implementation of SchemaSQL. We share with them the goal
of a “non-intrusive” implementation (i.e. without requiring changes
in the database engine code). The extended-algebra we use in our
query transformations includes v2h and h2v operations that can
be viewed as the specializations of unfold and fold respectively in
[11]. As we will see later in the paper, we have been able to realize
substantial performance gains from this specialization.

1.3 Alternative Representations
The work on decomposition storage model [5] [9] split a hori-

zontal table into as many 2-ary tables as the number of columns.
A common surrogate tied different fields of a tuple across tables.

There are now as many tables as the number of attributes. This
storage model has been implemented in the Monet System which
also developed an algebra to hide the decomposition [4]. An early
work [16], done in the context of data base machines, also explored
the option of storing table data on a per attribute basis. This rep-
resentation has also been used in the IBM’s Enterprise Directory
LDAP product [19].

Another alternative would be to create one separate table for
each category. Yet another alternative would be to create one ta-
ble for common attributes and per category separate tables for non-
common attributes. See [7] for some other alternatives and a perfor-
mance study done in the context of storing XML data. Messaging
systems such as Lotus Notes and Microsoft Exchange have also
developed specialized structures to support sparse rows containing
optional columns. However, there is no support for SQL querying
in these messaging systems.

We will focus on the 3-ary representation of data as outlined
in Section 1.2 (henceforth referred to as vertical representation).
This representation offers an interesting design point between the
conventional n-ary horizontal representation (henceforth referred
to as horizontal representation) and the 2-ary binary representation
(henceforth referred to as binary representation). Like the hori-
zontal representation, the vertical representation requires only one
table to store data, whereas the binary representation splits the ta-
ble into as many tables as the number of attributes. While there
are applications (e.g. SAP) that store data across a large number of
tables, having thousands of tables instead of one makes the system
harder to manage and operate. Schema evolution is trivial with the
vertical representation, whereas an addition (deletion) of a new at-
tribute requires “altering” the table in the horizontal representation
and an addition (deletion) of a table in the binary representation.
On the negative side, the vertical representation loses data typing
since all values are stored as VARCHARs in the Val field, although
it is easy to design extensions to support data typing if desired2.

The horizontal representation is well studied in the database liter-
ature and there has been excellent work in understanding the trade-
offs of the binary representation [4] [5] [9]. Because of its man-
ageability and flexibility, the the vertical representation is increas-
ingly finding its way in many commercial systems. It behooves the
database community to investigate and study how best to support
the vertical representation to bring the new emerging applications
to its fold. The work we present is a step in this direction that com-
pliments earlier work.

1.4 Organization of the Paper
The rest of the paper is organized as follows. In Section 2, we

discuss rewriting of the queries from the horizontal format to ver-
tical format. We discuss the implementation strategies in Section 3
and give performance results in Section 4. We conclude with a
summary and some pointers for the database system practitioners
in Section 5. We also refer the reader to the extended version of this
paper [3] that contains additional explanations and performance re-
sults.

2Create a separate vertical table for every data type. A catalog table
maintains data type information for each attribute. Thus we might
have a scheme as shown below:

ATTRIBUTES (KEY CHAR(K) PRIMARY KEY,
DATATYPE CHAR(N));
V INT(OID INTEGER, KEY CHAR(K), VAL INTEGER);
V FLOAT(OID INTEGER, KEY CHAR(K), VAL FLOAT);
V VARCHAR(OID INTEGER, KEY CHAR(K), VAL
VARCHAR(X));

2. TRANSFORMATIONS
Our overall approach is to define a horizontal view H over a

vertical table V . The user poses regular SQL queries over this view,
which are translated into queries that run against the underlying
vertical table. We will describe these transformations in terms of
an extended algebra in this section. In Section 3, we discuss their
implementation in a SQL system.

2.1 Algebra
We start with the well-understood algebraic operations [6]: select(�),

project(�), join(./), outer join(=./<), left outer join(=./), right
outer join(./<), cross product(�), difference(�), intersection(\),
union([), and aggregation(F). We add two operations to this alge-
bra: v2h(
) and h2v(0). We define the semantics of these opera-
tions after briefly introducing a few notations.

Notation
Assume that the vertical table V has the scheme (Oid;Key;Val)
with a non-nullable column Oid and that A1; : : : ;An are the key
values in V . The equivalent horizontal table H has the scheme
(Oid ;A1; : : : ;An) with the column Oid being non-nullable. We
use Ak+m to represent the (k+m)th attribute. The symbol ? rep-
resents a null value.

We will use �k
i=1	i as a short hand for 	1�	2 � � ��	k . For a

join operation (including its outer species), unless otherwise stated,
assume the join predicate to be the equality of Oid . An explicit
join predicate 	 will be specified as ./

	

.

Sometimes we will use $0, $1, etc. to refer to the columns of a
result table.

For visual clarity, we will sometimes add square brackets in an
expression as shown below.

[0] � [�k
i=1	i]

These square brackets do not affect the order of evaluation in any
way; they are there only to enhance readability.

v2h Operation
Intuitively, the v2h(
) operation takes as input a vertical table and
a list of attribute names and returns a horizontal table with those
attribute names as the column labels.

k(V) creates a horizontal table of arity k+1 whose first column

is Oid and the first k key values form the rest of the k columns3.
The content of the table is defined by:

k(V) = [�Oid (V)]=./

[=./ki=1�Oid;Val(�Key=`Ai0(V))] (1)

Because of the first term on the right hand side and the use of left
outer join, Eq. 1 can yield tuples with nulls in all of the non-Oid
columns. For example,
2 applied to the vertical table V from
Figure 1 results in the table shown in Figure 2. For Oid = 3, V
does not contain tuples corresponding to key values A1 and A2.
However, the result table contains a tuple with this Oid and null
values for attributes A1 and A2.

This semantics is consistent with the null handling in SQL. For
instance, a projection of the horizontal table in Figure 1 on at-
tributes A1 and A2 will indeed preserve the tuple corresponding
to Oid = 3 in SQL.

3Since the columns in a relation are supposed to be orderless,
strictly speaking
 should take column names as parameters. We
have chosen this notational simplification for ease of exposition.

2(V)
$0 $1 $2
1 a b
2 ? c
3 ? ?
4 b ?

0
2(H)

$0 $1 $2
1 A1 a
1 A2 b
2 A2 c
3 A1 ?
3 A2 ?
4 A1 b

Figure 2: Results of v2h and h2v Operations

But for null handling, which was not discussed, the v2h opera-
tion is equivalent to Unfold by Key on Val(V) in SchemaSQL [11].
This operation is also similar to the Gather operation in [18].

h2v Operation
The h2v(0) operation is the inverse of the v2h operation. Intu-
itively, it takes as input a horizontal table and converts it into a
vertical table where each column label in the horizontal table is
converted to a key value in the vertical table.

Assume a horizontal tableH having the scheme (Oid;A1; : : : ;An)
with the column Oid being non-nullable. 0k(H) creates a verti-
cal table with the scheme (Oid ;Key;Val). The content of V is
defined by:

0
k(H) = [[ki=1 �Oid;`Ai0 ;Ai(�Ai 6= `?0(H))] [

[[ki=1 �Oid;`Ai0 ;Ai(�^k
i=1

Ai = `?0(H))] (2)

For each tuple h in H , the first term in Eq. 2 creates the tuples
f< Oid ; `Ai0; h:Ai > ji = 1; :::; k ^ h:Ai 6= ?g. The second
term handles the special case of a horizontal tuple that has null
values in all of the non-Oid columns. Figure 2 shows the result of
applying02 to the horizontal table H from Figure 1.

Again, but for null handling, this operation is equivalent to
Fold by Val on Key(V) in SchemaSQL [11]. This operation is also
similar to the Scatter operation in [18].

2.2 Rewritings
We describe now the rewritings of the standard algebraic oper-

ations on the horizontal view over a vertical table. We give two
forms of rewritings: one with and the other without using the v2h
operation. The former can be used on a SQL-92 system whereas
the latter can exploit the implementation of v2h operation using
the object-relational extensions. See [3] for illustrative examples
of these rewritings.

Projection
Let the projection be on attributes A1; : : : ;Ak. We have, from the
definition of the v2h operation:

�A1;::: ;Ak(H)

=
k(V) (3)

= [�Oid (V)] =./ [=./
k
i=1�Oid ;Val(�Key=`Ai0(V))] (4)

Selection
We discuss the usual case of a selection followed by projection. Let
the selection predicate be ^k

i=1(Ai � `ai
0) and the projection be on

the first k+m attributes, m � 0.

�A1;::: ;Ak+m(�^k
i=1

Ai � `ai0
(H))

= �A1;::: ;Ak+m(�^k
i=1

Ai � `ai0
(
k+m(V))) (5)

= �$1;::: ;$k+m(

[\ki=1�Oid(�Key=`Ai0^Val � `ai0(V))]

=./ [=./k+mi=1 �Oid;Val(�Key=`Ai0 (V))]) (6)

A disjunctive selection

�A1;::: ;Ak+m(�_k
i=1

Ai � `ai0
(H))

can be transformed by replacing the intersection\k
i=1 in Eq. 6 with

the union [ki=1.

Join
Take a horizontal table H having the scheme (Oid ;A1; : : : ; An)
which is really a logical view over a vertical table V . Its join with a
true horizontal tableRH having the scheme (R1; : : : ; Rr) is given
by:

�A1;::: ;Ak;Rk+1;::: ;Rk+m(H ./
^k
i=1

Ai � Ri

RH)

= �A1;::: ;Ak;Rk+1;::: ;Rk+m(

k(V) ./

^k
i=1

Ai � Ri

RH) (7)

= �$1;::: ;$k;Rk+1;::: ;Rk+m(

[./ki=1 �Oid ;Val(�Key=`Ai0 (V))] ./
^k
i=1

$i=Ri

[RH])(8)

Aggregation
We use the following notation from [6] to specify aggregation:

Grouping attributes F Function list (Table name)

Function list consists of (function, attribute) pairs, where func-
tion can be one of the allowed aggregate functions such as SUM,
COUNT, AVG, MAX, and MIN. The transformations are:

A1;::: ;Ak F F Ak+1 (H)

= A1;::: ;Ak F F Ak+1 (

k(V)) (9)

= $1;::: ;$k F F $k+1

([�Oid(V)]=./ [=./
k
i=1 �Oid;Val(�Key=`Ai0(V))])(10)

For aggregate functions, SUM, MIN, and MAX, which are un-
affected by null values in the column being aggregated, Eq. 10 can
be simplified to:

A1;::: ;Ak F F Ak+1 (H) =

$1;::: ;$k F F $k+1(=./<
k
i=1 �Oid ;Val(�Key=`Ai0 (V))) (11)

Set Operations
The set operations cross product(�), union([), intersection(\), and
difference(�) can be transformed by first applying the v2h opera-
tion on the vertical table(s) and then carrying out the desired oper-
ation.

Updates
Updates are easy. Insertion requires decomposing a data object into
a set of attribute name and value pairs and inserting them into V

with a common Oid. A predicate-based deletion requires determin-
ing the Oid set of objects satisfying the predicate and deleting the

corresponding tuples from V . An update results in a change of the
value field in some tuples in V . It can also cause some insertions
and deletions.

Output
There may be need for transforming the result of an operation in-
volving a vertical table back into the vertical format (e.g. for storing
the result). This can be accomplished by applying the h2v opera-
tion on the result table.

3. IMPLEMENTATION
With the algebra described above in hand, we are in a position

to develop a non-intrusive enablement layer on top of the database
engine that hides from the user (application) the vertical table. A
horizontal view H is defined for the vertical table V using an ex-
tended DDL:

CREATE HORIZONTAL VIEW H ON
VERTICAL TABLE V USING COLUMNS (A1; A2; : : : ; An)

where Ai=1;n represent attribute names (keys) in the vertical table.
The DDL is generated by the enablement layer. The user poses
regular SQL queries over the view. The enablement layer parses
the SQL query, validates it, and transforms it to another SQL query
that runs against the underlying vertical table. It uses a query graph
structure to facilitate this translation.

We consider three transformation strategies.

3.1 VerticalSQL
This implementation assumes only the SQL-92 level capabilities

from the underlying database engine. The enablement layer uses
the second set of equations for translating each of the algebraic
operations given in Section 2 for this implementation. See [3] for
an example.

3.2 VerticalUDF
This implementation attempts to exploit object-relational exten-

sions to SQL, particularly the user-defined table functions. The
underlying engine is extended with the table functions for v2h and
h2v operations. The v2h table function reads tuples of vertical ta-
ble sorted on Oid and outputs a horizontal tuple for each Oid. The
h2v table function takes as input column names and a horizontal
tuple and splits it into vertical tuples.

The enablement layer uses the first set of equations for trans-
lating each of the algebraic operations given in Section 2 for this
implementation. For example, the projection query:

SELECT A1, A2 FROM H

is translated into4:

SELECT t.Attr1, t.Attr2
FROM V v , TABLE(v2h(v.Oid, v.Key, v.Val)) AS t(Oid,
Attr1, Attr2)
WHERE v.Key=‘A1’ or v.Key=‘A2’

The query appears to be a Cartesian product between the vertical
relation V and the table function v2h. What happens in effect is
that the relevant fields from any qualifying tuple v after applying
the select predicates on the V table are passed as parameters into
the v2h function, which in turn produces horizontal tuples t from
which the fields in the select list are extracted.

The v2h table function requires v tuples to be streamed in the
Oid order so that it can buffer the key-value pairs until the Oid
4The actual translation is more complex and includes an additional
clause in the join list for selecting distinct Oid’s from V.

changes. At that point, it can output the tuple corresponding to the
horizontal view. Unfortunately, the current SQL syntax does not
allow the specification of the order in which the tuples should be
streamed into a table function and that causes problems. Note that
a good plan for the above query will push down the Key predicates
on A1 and A2 so as to select only the relevant tuples from the
V relation. However, the output of this selection would generate
tuples in Key or physical row-id order which is different from the
Oid order required for v2h.

A workaround this problem is to introduce a join of the tuple
stream produced by the selection with a table of Oid’s and cajole
the optimizer to pick a merge sort join plan, thereby forcing a sort
on Oid. By introducing this join and adjusting the optimization
level for the the DB2 query optimizer, we could generate the cor-
rect plans. We were able to play similar tricks for other algebraic
operations.

3.3 SchemaSQL
This implementation employs the non-intrusive strategies pro-

posed for the SchemaSQL implementation [11]. Specifically, we
implemented unfold I and unfold II strategies5. These strategies re-
sult in SQL translations that are different from the ones given in
Section 2. See [3] for details.

4. PERFORMANCE EXPERIMENTS
We now present the results of our extensive experiments to study

the performance of the alternative implementations of the enable-
ment layer just described. We include in this study the performance
comparison with the horizontal representation as well as binary rep-
resentation discussed in Section 1.3. They will be referred to as
HorizontalSQL and Binary respectively.

4.1 Experimental Setup
All experiments were run on a 600 MHz dual processor Intel

Pentium machine with 512 MB of physical memory. The operating
system was Windows NT 4.0 and the database system used was
DB2 UDB 7.1. The machine had two 30GB IDE drives. Data was
placed on one disk and the temporary table spaces and the logs were
created on the other. The buffer pool size was set to 50MB and the
prefetch size to 512KB.

To study performance characteristics over a wide range of op-
erating regions, we used synthetic data that allowed us to vary the
following parameters:

� Number of columns in the horizontal table
� Number of rows in the horizontal table
� Non-null density (i.e. percentage of field values that are not

null)
� Selectivity of a predicate for each column
� Number of distinct values in each column
� Size of each column

Given a set of these parameter values, we first generated data in the
horizontal format and then transposed it into its equivalent vertical
and binary formats. We kept the size of a table (number of rows �
number of columns in a row) constant by adjusting the number of
rows as we varied the number of columns. See [3] for details of the
data generation algorithm.

We generate the following schemes for horizontal, vertical, and
binary tables respectively:
5[11] proposed another strategy, called unfold III, which avoids the
cost of creating temporary tables incurred by unfold I and unfold
II. However, as pointed out in [11], a non-intrusive implementation
of unfold III turns out to be less efficient than unfold I due to the
tuple-at-a-time nature of the implementation.

Project

density = 10%

0

10

20

30

40

50

60

200x100K 400x50K 800x25K 1000x20K

Table (#cols x #rows)

E
xe

cu
ti

o
n

ti
m

e
(s

ec
o

n
d

s)

Join

density = 10%, 1000 cols x 20K rows

0

5

10

15

20

25

0.1% 1% 5%

Join selectivity

E
xe

cu
ti

o
n

ti
m

e
(s

ec
o

n
d

s)

VerticalSQL_oid VerticalSQL_key

Figure 3: Clustering by Key versus Oid

H (OID INTEGER, A0 VARCHAR(X), A1 VARCHAR(X),: : : ,
An VARCHAR(X))
V (OID INTEGER, KEY CHAR(K), VAL VARCHAR(X))
TAB Aj (OID INTEGER, VAL VARCHAR(X))

where X is the size in number of bytes (set to 16) and K is the
size of the key field (set to 5). There were n binary tables TAB Aj

corresponding to n columns in H . The queries for various oper-
ations were generated using the additional parameters such as the
columns involved in the operation and selectivities.

4.2 Layout
The data for horizontal as well as binary tables was clustered by

Oid. For the vertical table, we have two choices for the physical
layout: i) cluster by Oid, or ii) cluster by Key. We performed ex-
tensive experiments and found that clustering by Key consistently
resulted in much higher performance than clustering by Oid. Fig-
ure 3 shows the performance of clustering by Key versus Oid for
projection and join operations. The settings for these experiments
are exactly the same as used for experiments reported later in the
paper in Figures 4 and 7 respectively. We have not included those
graphs, but we found large gaps in performance for selection as
well as aggregation operations.

To understand this performance difference, let us consider the
projection operation. The SQL translation of the projection op-
eration corresponding to the algebraic transformation presented in
Eq. 4 in Section 2 contains selection predicates on Key values. Af-
ter applying the selection predicate using an index on the Key col-

umn, the qualifying tuples are fetched. If the data is physically laid
out in the Key order, we get the benefit of clustered I/O. If, on the
other hand, the data is clustered by Oid, fetching the tuples results
in unclustered I/O which is very inefficient.

4.3 Indices
Every column involved in a query on the horizontal table was

indexed. We also indexed both the columns of every binary table.
For the vertical table, we indexed each of the three columns.

Note that we end up indexing the entire data in the vertical ta-
ble. Contrast this to the case of the horizontal table where just the
columns involved in the typical query workload are indexed. We
found that the total size of the indices for vertical table was typ-
ically two orders of magnitude larger compared to the horizontal
indices and large portions of the vertical indices were not useful for
any of the queries. Having large indices adversely impacts the per-
formance of the vertical representation because of the time spent
in loading the indices and the increase in path length due to deeper
index trees. It would have helped if the database supported partial
indices [20] that allow only the rows of interest to be indexed.

4.4 Performance Results
We now summarize the important results from a very large num-

ber of experiments we performed. We will present the results for
project, select, join and aggregation operations. We flushed buffer
pool, main memory and file system cache before the start of each
run to get cold start numbers.

We will report the performance of a single operation at a time
in order to isolate the trade-offs for each operation. Of course, a
typical database query contains a combination of operations. We
ran several such composite queries but did not find any trend we
could not predict having understood the trade-offs for individual
operations.

We found the implementations using the SchemaSQL strategies
performed 2-3 times slower compared to VerticalSQL6. The cul-
prit was the creation of a large number of intermediate temporary
tables, a problem recognized by the implementors of SchemaSQL
[11]. We therefore do not include the SchemaSQL numbers in the
results.

In the initial set of results, we include numbers for Horizontal-
SQL, VerticalSQL and Binary. Later in Section 4.5, we present
results that are indicative of the performance achievable from a Ver-
ticalUDF implementation.

Projection
Figure 4 shows the performance of various strategies for the pro-
jection operation. The number of projected columns is 10, thereby
requiring 10-way joins with the Binary and VerticalSQL strategies.
In each graph, the execution times are shown for four horizontal
tables and their equivalent vertical and binary tables. The horizon-
tal tables differ in the number of rows and columns but their total
size (#rows � #columns) is kept constant. The number of rows de-
creases as we move from left to right in the graphs (which explains
the reduction in the execution time for all the strategies). We show
graphs for non-null density � = 5% and 10%.

The surprising result from these experiments is that VerticalSQL
uniformly outperforms HorizontalSQL in spite of requiring multi-
ple joins. The superior performance of Binary over HorizontalSQL
reconfirms the results in [4] [7] [9].

The reason for the relative poor performance of the horizontal
format is that the whole tuple needs to be fetched before the rel-
6This observation should not be construed as a negative statement
against SchemaSQL, which addresses a more general problem.

(� = 5%)

0

10

20

30

40

50

200x100K 400x50K 800x25K 1000x20K

Table (#cols x #rows)

E
xe

cu
ti

o
n

ti
m

e
(s

ec
o

n
d

s)

(� = 10%)

0

10

20

30

40

50

200x100K 400x50K 800x25K 1000x20K

Table (#cols x #rows)

E
xe

cu
ti

o
n

ti
m

e
(s

ec
o

n
d

s)

HorizontalSQL VerticalSQL Binary

Figure 4: Projection performance (10 cols)

evant fields can be extracted. There is additional cost of finding
where the relevant fields for a tuple lie on a page, which can be
substantial for a wide tuple with a large number of fields. In the
case of a vertical table, the index on the Key field allows only the
tuples corresponding to attributes participating in the projection to
be retrieved. The net is a decrease in total I/O.

Between Binary and VerticalSQL, Binary performs slightly bet-
ter. A tuple in the binary representation contains only the attribute
value, whereas a tuple in the vertical representation contains both
attribute name (key) and value. Thus, the total I/O will be less
in the binary scheme. Moreover, the vertical scheme requires an
additional selection on the key field for locating tuples having the
desired attribute name, which is not needed in the binary scheme
since it has a separate table for each attribute. Later in Section 4.5,
we see how the performance of the vertical scheme can be made
better than binary by using the VerticalUDF implementation.

Figure 5 shows the effect on performance as the number of pro-
jected columns is varied. The experiments were run for the dataset
1000 � 20K and for non-null densities � = 5% and 10%. The rel-
ative performance of the various strategies remains the same as in
the previous experiments when number of projected columns was
fixed at 10 (Figure 4).

We see that the performance of HorizontalSQL is insensitive to
the number of projected columns. This trend can be understood by
recalling that when the tuples are wide, the projection performance
in the horizontal scheme is dominated by the cost of fetching tu-

(� = 5%)

0

10

20

30

40

5 10 20 40

Number of projected columns

E
xe

cu
ti

o
n

ti
m

e
(s

ec
o

n
d

s)

(� = 10%)

0

10

20

30

40

5 10 20 40

Number of projected columns

E
xe

cu
ti

o
n

ti
m

e
(s

ec
o

n
d

s)

HorizontalSQL VerticalSQL Binary

Figure 5: Impact of varying the number of projected
columns (1000 cols � 20K rows)

ples. The performance of Binary as well as VerticalSQL improves
as the number of projected columns decreases. This trend is quite
understandable since a decrease in number of projected columns
results in a decrease in number of joins these schemes need to per-
form. However, the execution time increases rather slowly as the
number of projected columns increases and VerticalSQL and Bi-
nary continue to outperform the horizontal scheme.

Selection
Selection experiments were run using the following query:

SELECT A40, A200 FROM H WHERE A200 = ‘A200V0’

The experiments were run for the dataset 1000� 20K with non-
null densities � = 5% and 10%. The selectivity of the selection
predicate was set to 0.1%, 1% and 5%. Figure 6 shows the results.

The plan for HorizontalSQL applies the selection predicate on
A200 and then fetches the qualifying tuples to extract attributes in
the select list. However, since the data is clustered by Oid, this
causes unclustered I/O of wide tuples, hurting the performance
of HorizontalSQL. As the predicate becomes less selective, the
amount of I/O increases and the query performance degrades.

VerticalSQL has to apply a predicate based on the value of A200
as well as the Key predicate for the projected column A40. The
fetch following the application of the Key predicate on A40 causes
clustered I/O while the one following the application of the value

(� = 5%)

0

5

10

15

20

0.1% 1% 5%

Selection selectivity

E
xe

cu
ti

o
n

ti
m

e
(s

ec
o

n
d

s)

(� = 10%)

0

5

10

15

20

0.1% 1% 5%

Selection selectivity

E
xe

cu
ti

o
n

ti
m

e
(s

ec
o

n
d

s)

HorizontalSQL VerticalSQL Binary

Figure 6: Selection performance (1000 cols � 20K
rows)

predicate on A200 causes unclustered I/O. It then sorts each of
these streams on Oid to do the join. However, since the tuples are
narrow, VerticalSQL ends up performing better than Horizontal-
SQL.

For Binary, the optimizer chooses a table scan for the A200 ta-
ble, followed by a sort, and a merge sort to join it with the A40
table. Since a table scan was chosen instead of an index scan, we
do not see much effect of selectivity on the query execution time.
Because of smaller indices and narrower tuples, Binary performs a
little better than VerticalSQL.

Join
For this set of experiments, we joined H with a horizontal table HR
whose scheme was:

HR(A1 VARCHAR(16), A2 VARCHAR(16))

HR has � � H rows, each of which has no null value. The join
query was:

SELECT h1.A40, h2.A2 FROM H h1, HR h2 WHERE h1.A1=h2.A1

All the columns involved in the query were indexed.
The experiments were run for the dataset 1000� 20K with non-

null densities� = 5% and 10%. The join selectivity was set to 0.1%,
1% and 5%. Figure 7 shows the results.

Both Binary and VerticalSQL considerably outperform Horizon-
talSQL, with Binary performing a little better. The join selectivity

(� = 5%)

0

5

10

15

20

0.1% 1% 5%

Join selectivity

E
xe

cu
ti

o
n

ti
m

e
(s

ec
o

n
d

s)

(� = 10%)

0

5

10

15

20

0.1% 1% 5%

Join selectivity

E
xe

cu
ti

o
n

ti
m

e
(s

ec
o

n
d

s)

HorizontalSQL VerticalSQL Binary

Figure 7: Join performance (1000 cols� 20K rows)

did not exhibit much affect on the performance of Binary and Verti-
calSQL. The query plans for both first compute a horizontal relation
consisting of attributes Oid, A1 and A40. For VerticalSQL, this in-
volves selection on the key predicates, fetching the tuples, sorting
them on Oid, and doing a merge sort join. For Binary, the selection
on the key predicate is not required since each attribute has its own
table (which explains the slight performance advantage). It there-
fore only requires fetching the tuples and joining them on Oid. For
both the schemes, this interim result is then joined with the HR ta-
ble using a merge sort join. It is only this last step that is affected
by the join selectivity. Since the cost of entire plan is dominated
by the I/O required to fetch the input tuples as opposed to the final
join, hence the execution time is not significantly affected by join
selectivity.

The plan for the Horizontal scheme involves a nested loop join
with the HR table as the outer and an index scan on the join col-
umn in the inner H table. However, since we have an additional
column in the select list, a fetch on the inner table does unclustered
I/O to get the tuples (H is clustered on Oid). This unclustered I/O
of wide tuples result in the poor performance of HorizontalSQL.
The amount of I/O depends on the number of tuples in H that join.
Hence the query performance degrades with increasing join selec-
tivity.

Aggregation
We measured aggregation performance by using the following query:

0

10

20

30

40

5% 10%

Density

E
xe

cu
ti

o
n

t
ti

m
e

(s
ec

o
n

d
s)

HorizontalSQL VerticalSQL Binary

Figure 8: Aggregation performance (1000 cols � 20K
rows)

SELECT A500, AVG(LENGTH(A0)) FROM H
GROUP BY A500

The experiments were run for the dataset 1000 � 20K with non-
null densities � = 5% and 10%. The number of groups in the result
was 100 for both densities. The average number of tuples processed
per group was 10 and 20 for densities� = 5% and 10% respectively.
Figure 8 shows the results.

HorizontalSQL needs to fetch the entire tuple to extract the fields
required in the aggregation computation. The horizontal tuples be-
ing wide, HorizontalSQL takes the performance hit of fetching a
large number of unnecessary fields. The query cost is dominated by
the I/O, not by the computation of the aggregation function. Hence
we do not see much difference in performance as the density of
the data increases (which mostly increases the aggregation func-
tion computation cost but affects the I/O marginally).

VerticalSQL and Binary have comparable performance, with Bi-
nary performing marginally better. The query plans for both the
strategies are similar to doing a projection of 2 columns (a v2h
operation), followed by the computation of the aggregation func-
tion. However, the execution time of the query is dominated by the
I/O time to implement v2h and therefore we only see a marginal
increase in execution time as the density increases.

4.5 Exploiting the Object-Relational Features
We saw from the performance results just presented that Verti-

calSQL uniformly outperforms HorizontalSQL but slightly under
performs Binary. We show in this section that with a little better
support from table functions, the VerticalUDF strategy can outper-
form Binary. VerticalUDF can avoid multi-way joins VerticalSQL
performs to assemble the attribute values of a tuple. What needs
to be ensured is that the relevant tuples from the vertical table are
streamed into the v2h table functions in the Oid order. The table
function then can do the assembly and output the horizontal tuple.

Let us first consider the projection operation. Figure 9 compares
the performance of VerticalUDF to Binary and VerticalSQLfor the
same datasets as in Figure 4. We show the graph for � = 10%; the
performance advantage of VerticalUDF was relatively larger for �
= 5%. The performance numbers for VerticalUDF were obtained
after adding all the contortions described in Section 3.2 for forcing
the tuples to stream into the v2h table function in the Oid order.
Thus, the performance numbers for VerticalUDF should be viewed
as the worst-case numbers. In spite of the unnecessary performance

(� = 10%)

0

10

20

30

200x100K 400x50K 800x25K 1000x20K

Table (#cols x #rows)

E
xe

cu
ti

o
n

ti
m

e
(s

ec
o

n
d

s)

VerticalSQL Binary VerticalUDF

Figure 9: Projection performance (Projection of 10
cols)

(� = 10%)

0

1

2

3

0.1% 1% 5%

Join selectivity

E
xe

cu
ti

o
n

ti
m

e
(s

ec
o

n
d

s)

VerticalSQL Binary VerticalUDF

Figure 10: Join performance (1000 cols � 20K rows)

penalty, VerticalUDF, performs uniformly better than both Binary
and VerticalSQL. The main reason for this performance win is the
avoidance of multi-way joins present in Binary and VerticalSQL.

Now consider the join query used in the performance evaluation
in Section 4.4. Figure 10 shows the performance of VerticalUDF,
VerticalSQL, and Binary for the same datasets and join selectivi-
ties as used in Figure 7. For executing this query using the Verti-
calUDF strategy, we would like to first apply the select predicates
on the key columns prior to streaming the tuples in the Oid or-
der into the table function. However, as discussed earlier, there is
no way to specify this order on the output of the select operation.
The workaround again is to create an additional artificial join on
Oid’s and trick the optimizer into choosing a merge-sort plan for
this join, thereby creating a tuple stream sorted on Oid. The perfor-
mance numbers for VerticalUDF, therefore, should again be viewed
as the worst-case numbers. It is remarkable that the performance
of VerticalUDF comes so close to Binary in spite of all the unnec-
essary overhead. Also, in a typical query, joins are often followed
several projections. The performance gain in the projection opera-
tion allows VerticalUDF to outperform Binary for such composite

queries. We found similar issues for selection and aggregation.
We would like the table function to be able to control the order in

which input arguments are supplied to it. The need for such facil-
ity has been identified for other applications also [18]. If the table
function syntax is extended with this feature and the optimizer takes
advantage of it, we would avoid the performance penalty of intro-
ducing additional operations just to force the desired order on input
arguments. In that case, we expect VerticalUDF to outperform the
other strategies.

5. CONCLUSIONS
Emerging applications such as e-commerce and portals are cre-

ating new threats and opportunities for database technology. The
prevalent conventional horizontal representation is optimized for
applications in which the data is dense and evolves slowly. The new
generation of applications require data schemas that are rapidly
evolving and sparsely populated.

To meet the requirements of these applications, many commer-
cial software systems have converged on a 3-ary vertical represen-
tation for storing objects in a table. This paper recounts our expe-
rience from building an e-marketplace using this vertical scheme
for representing data. The application was built using IBM Web-
sphere Commerce Server running on top of DB2. Our two main
contributions are:

� Design of an enablement layer that hides the complexity of
the queries over the vertical table and gives a horizontal view
of the vertical representation to the user (application). We
provide transformation algebra and techniques for its non-
intrusive implementation on top of a SQL database system.

� A thorough investigation of the performance trade-offs of the
vertical representation and a comparison of its performance
with the horizonal and binary (2-ary) representations. The
key results are:

– The performance of the vertical representation is sensi-
tive to the choice made for clustering the data. Cluster-
ing on Key has much higher performance than cluster-
ing on Oid.

– The vertical representation uniformly outperforms hor-
izontal representation for sparse data (in spite of the ex-
tremely efficient representation of null values in DB2).

– The performance of the vertical representation using
only the SQL-92 capabilities is comparable to the bi-
nary representation, the latter performing a little bet-
ter. By using table functions, the vertical representation
starts performing better than binary for the projection
operation. If the table function could provide some ex-
tra functionality (see below), the vertical representation
can outperform binary representation for other opera-
tions also.

The major arguments in favor of the vertical representation
have been its flexibility in supporting schema evolution and
manageability (single table versus as many tables as the num-
ber of attributes in the binary scheme). Based on the results
of this study, we can provide the following matrix for com-
paring the three representations:

We finally give a wish list of the capabilities we would like from
the database system to be able to further enhance the performance
of the vertical representation:

Horizontal Vertical Binary
Manageability + + -
Flexibility - + -
Performance - + +

� Partial indices We create an index on each of the three columns
of the vertical table. In the process, we end up indexing the
entire data in the vertical table. Having database support for
partial indices [20] that allow only the rows of interest to be
indexed will help improve the performance of the vertical
representation.

� Enhanced table functions The table function syntax needs to
be extended with additional clauses to specify the required
order of input arguments. This facility is critical for bene-
fitting from the v2h table function for assembling attribute
values from the vertical table into a horizontal tuple without
performing multiple joins.

� First class treatment of table functions Table functions are
currently not treated as first class objects during the query
optimization phase. Current systems do not allow table func-
tions to register the ordering of tuples they receive, the output
cardinality, or the order property for the tuples they produce.
Because of these limitations, optimizers often produce less
than optimal plans for executing queries that include table
functions.

� Native support for v2h and h2v operations Since v2h and
h2v operations are fundamental primitives for the efficient
execution of queries over vertical table, they should be sup-
ported natively by the database system for best results.

Acknowledgments
We wish to thank Jay Shanmugasundaram for providing us the
XQGM code, which we used in the enablement layer to represent
parsed queries.

6. REFERENCES
[1] Storing RDF in a relational database.

http://www-db.stanford.edu/ melnik/rdf/db.html.
[2] R. Agrawal, R. Bayardo, D. Gruhl, and S. Papdimitriou.

Vinci: A service-oriented architecture for rapid development
of web applications. In WWW10, Hongkong, May 2001.

[3] R. Agrawal, A. Somani, and Y. Xu. Storage and Querying of
E-Commerce data. Research report, IBM Almaden Research
Center, San Jose, CA 95120, June 2001. Available from
http://www.almaden.ibm.com/cs/quest.

[4] P. Boncz and M. Kersten. MIL primitives for querying a
primitive world. VLDB Journal, 8(2):101–119, October
1999.

[5] G. P. Copeland and S. Khoshafian. A decomposition storage
model. In Proceedings of the 1985 ACM SIGMOD
International Conference on Management of Data, Austin,
Texas, May 28-31, 1985, pages 268–279.

[6] R. Elmasri and S. B. Navathe. Fundamental of Database
Systems. Benjamin/Cummings, Redwood City, California,
1989.

[7] D. Florescu and D. Kossman. A performance evaluation of
alternative mapping schemes for storing XML data in a
relational database. Technical report, INRIA, France, May
1999.

[8] Internationl Business Machines. IBM Intelligent Miner
User’s Guide, Version 1 Release 1, SH12-6213-00 edition,
July 1996.

[9] S. Khoshafian, G. P. Copeland, T. Jagodis, H. Boral, and
P. Valduriez. A query processing strategy for the
decomposed storage model. In Proceedings of the Third
International Conference on Data Engineering, February
3-5, 1987, Los Angeles, California, USA, pages 636–643.

[10] R. Krishnamurthy, W. Litwin, and W. Kent. Language
features for interoperability of databases with schematic
discrepancies. In Proceedings of the 1991 ACM SIGMOD
International Conference on Management of Data, Denver,
Colorado, May 29-31, 1991, pages 40–49.

[11] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. On
efficiently implementing SchemaSQL on an SQL database
system. In Proceedings of 25th International Conference on
Very Large Data Bases, September 7-10, 1999, Edinburgh,
Scotland, pages 471–482.

[12] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian.
SchemaSQL – a language for querying and restructuring
multidatabase systems. In Proceedings of 22nd International
Conference on Very Large Data Bases, September 1996,
Bombay, India.

[13] W. Litwin and A. Abdellatif. Multidatabase interoperability.
IEEE Computer, 19(12):10–18, 1986.

[14] R. J. Miller. Using schematically heterogeneous structures.
In SIGMOD 1998, Proceedings ACM SIGMOD International
Conference on Management of Data, June 2-4, 1998, Seattle,
Washington, USA, pages 189–200.

[15] M. Minsky. A framework for representing knowledge.
Technical Report MIT-AI Laboratory Memo 306,
Massachusetts Institute of Technology Artificial Intelligence
Laboratory, June 1974.

[16] M. Missikoff. A domain based internal schema for relational
database machines. In Proceedings of the 1982 ACM
SIGMOD International Conference on Management of Data,
Orlando, Florida, June 2-4, 1982, pages 215–224.

[17] K. A. Ross. Relations with relation names as arguments:
Algebra and calculus. In Proceedings of the Eleventh ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 2-4, 1992, San Diego, California,
pages 346–353.

[18] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating
association rule mining with relational database systems:
Alternatives and implications. Data Mining and Knowledge
Discovery, 4(2/3), July 2000.

[19] S. Shi, E. Stokes, D. Byrne, C. Corn, D. Bachmann, and
T. Jones. An enterprise directory solution with DB2. IBM
Systems Journal, 39(2):360–383, 2000.

[20] M. Stonebraker. The case for partial indexes. SIGMOD
Record, 18(4):4–11, 1989.

[21] M. Wang, B. R. Iyer, and J. S. Vitter. Scalable mining for
classification rules in relational databases. In IDEAS 1998,
pages 58–67.

