
Research Report

Integrating Association Rule Mining with Relational

Database Systems: Alternatives and Implications

Sunita Sarawagi

Shiby Thomas

Rakesh Agrawal

IBM Research Division

Almaden Research Center

650 Harry Road

San Jose, CA 95120-6099

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and speci�c requests. After outside publication,
requests should be �lled only by reprints or legally obtained copies of the article (e.g., payment of royalties).

IBM
Research Division
Yorktown Heights, New York � San Jose, California � Zurich, Switzerland

Integrating Association Rule Mining with Relational

Database Systems: Alternatives and Implications

Sunita Sarawagi

Shiby Thomas �

Rakesh Agrawal

IBM Research Division

Almaden Research Center

650 Harry Road

San Jose, CA 95120-6099

ABSTRACT: Data mining on large data warehouses is becoming increasingly important. In support of this

trend, we consider a spectrum of architectural alternatives for coupling mining with database systems. These

alternatives include: loose-coupling through a SQL cursor interface; encapsulation of a mining algorithm in a

stored procedure; caching the data to a �le system on-the-
y and mining; tight-coupling using primarily user-

de�ned functions; and SQL implementations for processing in the DBMS. We comprehensively study the option

of expressing the mining algorithm in the form of SQL queries using Association rule mining as a case in point.

We consider four options in SQL-92 and six options in SQL enhanced with object-relational extensions (SQL-

OR). Our evaluation of the di�erent architectural alternatives shows that from a performance perspective, the

Cache-Mine option is superior, although the performance of the SQL-OR option is within a factor of two. Both

the Cache-Mine and the SQL-OR approaches incur a higher storage penalty than the loose-coupling approach

which performance-wise is a factor of 3 to 4 worse than Cache-Mine. The SQL-92 implementations were too slow

to qualify as a competitive option. We also compare these alternatives on the basis of qualitative factors like

automatic parallelization, development ease, portability and inter-operability. As a byproduct of this study, we

identify some primitives for native support in database systems for decision-support applications.

�Current a�liation: Dept. of Computer & Information Science & Engineering, University of Florida, Gainesville

1. Introduction

An ever increasing number of organizations are installing large data warehouses using relational database

technology. There is a huge demand for mining nuggets of knowledge from these data warehouses.

The initial research on data mining was concentrated on de�ning new mining operations and developing

algorithms for them. Most early mining systems were developed largely on �le systems and specialized data

structures and bu�er management strategies were devised for each algorithm. Coupling with database systems

was at best loose, and access to data in a DBMS was provided through an ODBC or SQL cursor interface (e.g.

[Int96, AAB+96, HFK+96, IM96]).

Researchers of late have started to focus on issues related to integrating mining with databases. There

have been language proposals to extend SQL to support mining operators. For instance, the query language

DMQL [HFK+96] extends SQL with a collection of operators for mining characteristic rules, discriminant

rules, classi�cation rules, association rules, etc. The M-SQL language [IVA96] extends SQL with a special

uni�ed operator Mine to generate and query a whole set of propositional rules. Another example is the mine

rule [MPC96] operator for a generalized version of the association rule discovery problem. Query
ocks for

association rule mining using a generate-and-test model has been proposed in [TAC+98].

The issue of tightly coupling a mining algorithm with a relational database system from the systems point

of view was addressed in [AS96b]. This proposal makes use of user-de�ned functions (UDFs) in SQL statements

to selectively push parts of the computation into the database system. The objective was to avoid one-at-a-time

record retrieval from the database, saving both the copying and process context switching costs. In [SK97],

the focus is on developing a mining system with minimal database interaction. The SETM algorithm [HS95] for

�nding association rules was expressed in the form of SQL queries. However, as shown in [AMS+96], SETM is

not e�cient and there are no results reported on running it against a relational DBMS. Recently, the problem

of expressing the association rules algorithm in SQL has been explored in [RIC97]. We discuss this work later

in the paper.

1.1. Goal

This paper is an attempt to understand implications of various architectural alternatives for coupling data

mining with relational database systems. In particular, we are interested in studying how competitive can

a mining computation expressed in SQL be compared to a specialized implementation of the same mining

operation.

There are several potential advantages of a SQL implementation. One can make use of the database indexing

and query processing capabilities thereby leveraging on more than a decade of e�ort spent in making these

systems robust, portable, scalable, and concurrent. One can also exploit the underlying SQL parallelization,

particularly in an SMP environment. The DBMS support for checkpointing and space management can be

valuable for long-running mining algorithms

The architecture we have in mind is schematically shown in Figure 1. We visualize that the desired mining

operation will be expressed in some extension of SQL or a graphical language. A preprocessor will generate

appropriate SQL translation for this operation. We consider translations that can be executed on a SQL-

92 [MS92] relational engine, as well as translations that require some of the newer object-relational capabilities

1

Preprocessor

Optimizer
 +

Extended
SQL-92

SQL-OR

Relational
engine

Object relational
engine

GUI

SQL

Figure 1: SQL architecture for mining in a DBMS

being designed for SQL [Kul94]. Speci�cally, we assume availability of blobs, user-de�ned functions, and table

functions [PR98]. We do not assume mining speci�c extensions in the underlying relational engine; however,

identi�cation of such extensions is a secondary goal of this study.

We compare the performance of the above SQL architecture with the following alternatives:

Read directly from DBMS:. Data is read tuple by tuple from the DBMS to the mining kernel using a

cursor interface. Data is never copied to a �le system. We consider two variations of this approach. One

is the loose-coupling approach where the DBMS runs in a di�erent address space from the mining process.

This is the approach followed by most existing mining systems. A potential problem with this approach is the

high context switching cost between the DBMS and the mining process [AS96b]. In spite of the block-read

optimization present in many systems (e.g. Oracle [Ora92], DB2 [Cha96]) where a block of tuples is read at a

time, the performance could su�er. The second is the stored-procedure approach where the mining algorithm

is encapsulated as a stored procedure [Cha96] that runs in the same address space as the DBMS. The main

advantage of both these approaches is greater programming
exibility and no extra storage requirement. Also,

any previous �le system code can be easily transferred to work on data stored in the DBMS. The mined results

are stored back into the DBMS.

Cache-mine:. This option is a variation of the Stored-procedure approach where after reading the entire data

once from the DBMS, the mining algorithm temporarily caches the relevant data in a lookaside bu�er on a

local disk. The cached data could be transformed to a format that enables e�cient future accesses. The cached

data is discarded when the execution completes. This method has all the advantages of the stored procedure

approach plus it promises to have better performance. The disadvantage is that it requires additional disk space

for caching. Note that the permanent data continues to be managed by the DBMS.

User-de�ned function (UDF):. The mining algorithm is expressed as a collection of user-de�ned functions

(UDFs) [Cha96] that are appropriately placed in SQL data scan queries. Most of the processing happens in the

UDF and the DBMS is used primarily to provide tuples to the UDFs. Little use is made of the query processing

capability of the DBMS. The UDFs are run in the unfenced mode (same address space as the database). Such

an implementation was presented in [AS96b]. The main attraction of this method over Stored-procedure is

performance since passing tuples to a stored procedure is slower than passing it to a UDF. Otherwise, the

processing happens in almost the same manner as in the stored procedure case. The main disadvantage is

the development cost since the entire mining algorithm has to be written as UDFs involving signi�cant code

rewrites [AS96b]. This option can be viewed as an extreme case of the SQL-OR approach where UDFs do all

the processing.

2

1.2. Methodology

We do both quantitative and qualitative comparisons of the architectures stated above with respect to

the problem of discovering Association rules [AIS93] against IBM DB2 Universal Server [IBM97]. We present

performance results only for the Boolean association rules problem. However, we have also experimented with

generalized association rules discovery [SA95] and sequential patterns discovery [AS95, SA96] problems and

found similar results.

For the loose-coupling and Stored-procedure architectures, we use the implementation of the Apriori

algorithm [AMS+96] for �nding association rules provided with the IBM data mining product, Intelligent

Miner [Int96]. For the Cache-Mine architecture, we used the \space" option provided in Intelligent Miner

that caches the data in a binary format after the �rst pass. For the UDF architecture, we use the UDF imple-

mentation of the Apriori algorithm described in [AS96b]. For the SQL-architecture, we consider two classes of

implementations: one uses only the features supported in SQL-92 and the other uses object-relational extensions

to SQL (henceforth referred to as SQL-OR). We consider four di�erent implementations in the �rst case and

six in the second. These implementations di�er in the way they exploit di�erent features of SQL. We compare

the performance of these di�erent approaches using four real-life datasets. We also use synthetic datasets at

various points to better understand the behavior of di�erent algorithms.

Our focus in this paper is on the performance of various architectures. We do not consider the issues of

the language constructs required to extend SQL with mining features, nor do we discuss the preprocessing step

shown in Figure 1.

One point to be kept in mind when reading the paper is that our conclusions about the comparison of

di�erent architectures are based on the current associations algorithms and DBMS systems (DB2/UDB version

5). If the algorithms are made signi�cantly faster or the DBMS systems performance characteristics change

drastically these conclusions may no longer be valid.

1.3. Paper Layout

The rest of the paper is organized as follows. In Section 2, we cover background material where we give a

brief review of the problem of �nding association rules and the Apriori algorithm [AMS+96] and discuss our

assumption of the input and output format. In Section 3, we present the overview of the SQL implementations.

In Sections 4 and 5, we elaborate on di�erent ways of doing the support counting phase of Associations in

SQL | Section 4 presents SQL-92 implementations whereas Section 5 gives implementations in SQL-OR. In

Section 6 we present a performance comparison of the di�erent architectural alternatives using real-life and

synthetic datasets. We also include qualitative comparisons of the di�erent architectures along the dimensions

of development and maintenance ease, storage and memory requirements, portability, inter-operability, and

parallelizability. In Section 7, we propose primitives in a relational DBMS that we believe would be useful for

a large class of mining algorithms. We conclude with a summary of results and directions for future work in

Section 8.

3

2. Background

2.1. Association Rules

Given a set of transactions, where each transaction is a set of items, an association rule [AIS93] is an

expression X!Y , where X and Y are sets of items. The intuitive meaning of such a rule is that the transactions

that contain the items in X tend to also contain the items in Y . An example of such a rule might be that \30%

of transactions that contain beer also contain diapers; 2% of all transactions contain both these items". Here

30% is called the con�dence of the rule, and 2% the support of the rule. The problem of mining association

rules is to �nd all rules that satisfy a user-speci�ed minimum support and minimum con�dence.

The association rule mining problem can be decomposed into two subproblems [AIS93]:

� Find all combinations of items, called frequent itemsets, whose support is greater than minimum support.

� Use the frequent itemsets to generate the desired rules. The idea is that if, say, ABCD and AB are

frequent, then the rule AB!CD holds if the ratio of support(ABCD) to support(AB) is at least as large

as the minimum con�dence. Note that the rule will have minimum support because ABCD is frequent.

2.2. Apriori Algorithm

We use the Apriori algorithm [AMS+96] as the basis for our presentation. There are recent proposals for

improving the Apriori algorithm by reducing the number of data passes [Toi96, BMUT97]. They all have the

same basic data
ow structure as the Apriori algorithm. Our goal in this work is to understand how best to

integrate this basic structure within a database system. Later in the paper (in Section 6.3.1), we discuss how

our conclusions extrapolate to these algorithms.

The Apriori algorithm for �nding frequent itemsets makes multiple passes over the data. In the kth pass it

�nds all itemsets having k items called the k-itemsets. Each pass consists of two phases. Let Fk represent the

set of frequent k-itemsets, and Ck the set of candidate k-itemsets (potentially frequent itemsets). First, is the

candidate generation phase where the set of all frequent (k�1)-itemsets, Fk�1, found in the (k�1)th pass, is

used to generate the candidate itemsets Ck. The candidate generation procedure ensures that Ck is a superset

of the set of all frequent k-itemsets. A specialized in-memory hash-tree data structure is used to store Ck. Then,

data is scanned in the support counting phase. For each transaction, the candidates in Ck contained in the

transaction are determined using the hash-tree data structure and their support count is incremented. At the

end of the pass, Ck is examined to determine which of the candidates are frequent, yielding Fk. The algorithm

terminates when Fk or Ck+1 becomes empty.

2.3. Input-output formats

Input format. The input is a transaction table T with two column attributes: transaction identi�er (tid) and

item identi�er (item). For a given tid, typically there are multiple rows in the transaction table corresponding

to di�erent items that belong to the same transaction. The number of items per transaction is variable and

unknown during table creation time. Thus, alternative schemas may not be convenient. In particular, assuming

that all items in a transaction appear as di�erent columns of a single tuple (e.g. [RIC97]) is not practical

4

because often the number of items per transaction can be more than the maximumnumber of columns that the

database supports. For instance, for one of our real-life datasets the maximum number of items per transaction

is 872 and for another it is 700. In contrast, the corresponding average number of items per transaction is only

9.6 and 4.4 respectively.

Output format. The output is a collection of rules of varying length. The maximum length of these rules

is much smaller than the number of items and is rarely more than a dozen. Therefore, a rule is represented as

a tuple in a �xed-width table where the extra column values are set to NULL to accommodate rules involving

smaller itemsets. The schema of a rule is (item1; : : : ; itemk; len, rulem, con�dence, support) where k is the size

of the largest frequent itemset. The len attribute gives the length of the rule and the rulem attribute gives the

position of the ! in the rule. For instance, if k = 5, the rule AB!CD which has 90% con�dence and 30%

support is represented by the tuple (A; B; C; D; NULL; 4; 2; 0:9; 0:3). The frequent itemsets are represented

the same way as rules but do not have the rulem and con�dence attributes.

3. Associations in SQL

In Section 3.1 we present the candidate generation procedure in SQL and in Section 3.2 we present the

support counting procedure. Finally, in Section 3.3 we present the rule generation procedure.

3.1. Candidate generation in SQL

Each pass k of the Apriori algorithm �rst generates a candidate itemset set Ck from frequent itemsets Fk�1

of the previous pass.

Given Fk�1, the set of all frequent (k � 1)-itemsets, the Apriori candidate generation procedure [AMS+96]

returns a superset of the set of all frequent k-itemsets. We assume that the items in an itemset are lexico-

graphically ordered. Since, all subsets of a frequent itemset are also frequent, we can generate Ck from Fk�1 as

follows:

In the join step, a superset of the candidate itemsets Ck is generated by joining Fk�1 with itself:

insert into Ck select I1:item1, . . . , I1:itemk�1; I2:itemk�1

from Fk�1 I1; Fk�1 I2

where I1:item1 = I2:item1 and
...

I1:itemk�2 = I2:itemk�2 and

I1:itemk�1 < I2:itemk�1

For example, let F3 be ff1 2 3g, f1 2 4g, f1 3 4g, f1 3 5g, f2 3 4gg. After the join step, C4 will be ff1 2 3

4g, f1 3 4 5gg. Next, in the prune step, all itemsets c 2 Ck, where some (k � 1)-subset of c is not in Fk�1, are

deleted. Continuing with the example above, the prune step will delete the itemset f1 3 4 5g because the subset

f1 4 5g is not in F3. We will then be left with only f1 2 3 4g in C4.

We can perform the prune step in the same SQL statement as the join step by writing it as a k-way join

as shown in Figure 2. A k-way join is used since for any k-itemset there are k subsets of length (k � 1) for

5

which Fk�1 needs to be checked for membership. The join predicates on I1 and I2 remain the same. After

the join between I1 and I2 we get a k itemset consisting of (I1:item1; : : : ; I1:itemk�1; I2:itemk�1). For this

itemset, two of its (k � 1)-length subsets are already known to be frequent since it was generated from two

itemsets in Fk�1. We check the remaining k � 2 subsets using additional joins. The predicates for these joins

are enumerated by skipping one item at a time from the k-itemset as follows: We �rst skip item1 and check

if subset (I1:item2; : : : ; I1:itemk�1; I2:itemk�1) belongs to Fk�1 as shown by the join with I3 in the �gure. In

general, for a join with Ir, we skip item r � 2. Figure 3 gives an example for k = 4. We construct a primary

index on (item1; : : : ; itemk�1) of Fk�1 to e�ciently process these k-way joins using index probes.

Ck need not always be materialized before the counting phase. Instead, the candidate generation can be

pipelined with the subsequent SQL queries used for support counting.

I1.item_k-2 = I2.item_k-2
I1.item_k-1 < I2.item_k-1

I1.item1 = I2.item1

I1.item_k-1 = I3.item_k-2
I2.item_k-1 = I3.item_k-1

I1.item2 = I3.item1

I1.item_k-1 = Ik.item_k-2
I2.item_k-1 = Ik.item_k-1

I1.item1 = Ik.item1

F_k-1 I1 F_k-1 I2

(Skip item1)

(Skip item_k-2)

F_k-1 I3

F_k-1 Ik

Figure 2: Candidate generation for any k

I1.item2 = I2.item2
I1.item3 < I2.item3

I1.item1 = I2.item1 F3 I3

F3 I4

F3 I1 F3 I2

(Skip item1)

(Skip item2)

I1.item3 = I3.item2
I2.item3 = I3.item3

I1.item2 = I3.item1

I1.item3 = I4.item2
I2.item3 = I4.item3

I1.item1 = I4.item1

Figure 3: Candidate generation for k = 4

3.2. Counting support to �nd frequent itemsets

This is the most time-consuming part of the association rules algorithm. We use the candidate itemsets Ck

and the data table T to count the support of the itemsets in Ck. We consider two di�erent categories of SQL

implementations:

(A) The �rst one is based purely on SQL-92. We discuss four approaches in this category in Section 4.

(B) The second utilizes object-relational extensions like UDFs, BLOBs (Binary large objects) and table func-

tions. Table functions [PR98] are virtual tables associated with a user de�ned function which generate

tuples on the
y. They have pre-de�ned schemas like any other table. The function associated with a

table function can be implemented as a UDF. Thus, table functions can be viewed as UDFs that return

a collection of tuples instead of scalar values.

We discuss six approaches in this category in Section 5. UDFs in this approach are light weight and do

not require extensive memory allocations and coding unlike the UDF architectural option (Section 1.1).

6

3.3. Rule generation

In order to generate rules having minimum con�dence, minconf, we �rst �nd all non-empty proper subsets

of every frequent itemset l. Then, for each subset m, we �nd the con�dence of the rule m!(l �m) and output

the rule if it is at least minconf.

In the support counting phase, the frequent itemsets of size k are stored in table Fk. Before the rule

generation phase, we merge all the frequent itemsets into a single table F . The schema of F consists of k + 2

attributes (item1; : : : ; itemk; support; len), where k is the size of the largest frequent itemset and len is the

length of the itemset as discussed earlier in Section 2.3

We use a table function GenRules to generate all possible rules from a frequent itemset. The input argument

to the function is a frequent itemset. For each itemset, it outputs tuples corresponding to rules with all non-

empty proper subsets of the itemset in the consequent. The table function outputs tuples with k+3 attributes,

T item1; : : : ; T itemk; T support; T len; T rulem. The output is joined with F to �nd the support of the

antecedent and the con�dence of the rule is calculated by taking the ratio of the support values. Figure 4

illustrates the rule generation query.

insert into R select T item1, . . .T itemk,

t1.support, T len, T rulem, t1.support/f2.support

from F f1, table(GenRules(f1:item1,. . . ,f1:itemk,

f1.len, f1.support)) as t1, F f2

where (t1.T item1 = f2.item1 or t1.T rulem > 1)
...

AND (t1.T itemk = f2.itemk or t1.T rulem > k)

AND t1.T rulem = f2.len

AND t1.T support/f2.support > :minconf

Table function
GenRules

item1,...itemk, len, rulem,
confidence, support

F

F

conf > :minconf

Figure 4: Rule Generation

We can also do rule generation without using table functions and base it purely on SQL-92. The rules are

generated in a level-wise manner where in each level k we generate rules with consequents of size k. Further,

we make use of the property that for any frequent itemset, if a rule with consequent c holds then so do rules

with consequents that are subsets of c as suggested in [AMS+96]. We can use this property to generate rules in

level k using rules with (k�1) long consequents found in the previous level, much like the way we did candidate

generation in Section 3.1.

The fraction of the total running time spent in rule generation is very small. Therefore, we do not discuss

detailed performance evaluation of rule generation algorithms.

4. Support counting using SQL-92

We studied four approaches in this category | KwayJoin, 3wayJoin, 2GroupBy and Subquery.

7

4.1. K-way joins

In each pass k, we join the candidate itemsets Ck with k transaction tables T and follow it up with a group

by on the itemsets as shown in Figure 5. The �gure 5 also shows a tree diagram of the query. These tree

diagrams are not to be confused with the plan trees that could look quite di�erent.

insert into Fk select item1, . . . itemk , count(*)

from Ck, T t1, . . .T tk

where t1.item = Ck.item1 and
...

tk.item = Ck.itemk and

t1.tid = t2.tid and
...

tk�1.tid = tk.tid

group by item1,item2 . . . itemk

having count(*) > :minsup

Ck.item1 = t1.item

Ck.itemk = tk.item

Group by
item1,....,itemk

having
count(*) > :minsup

t1.tid = t2.tid

t1.tid = tk.tid

T t1 T t2

T tk

Ck

Figure 5: Support Counting by K-way join

This SQL computation, when merged with the candidate generation step, is similar to the one proposed in

[TAC+98] as a possible mechanism to implement query
ocks.

For pass-2 we use a special optimization where instead of materializingC2, we replace it with the 2-way joins

between the F1s as shown in the candidate generation phase in section 3.1. This saves the cost of materializing

C2 and also provides early �ltering of the T s based on F1 instead of the larger C2 which is almost a cartesian

product of the F1s. In contrast, for other passes corresponding to k > 2, Ck could be smaller than Fk�1 because

of the prune step.

4.2. Three-way joins

The above approach requires (k + 1)-way joins in the kth pass. We can reduce the cardinality of joins to 3

using the following approach which bears some resemblance to the AprioriTid algorithm in [AMS+96]. Each

candidate itemset Ck, in addition to attributes (item1; : : : ; itemk) has three new attributes (oid; id1; id2). oid

is a unique identi�er associated with each itemset and id1 and id2 are oids of the two itemsets in Fk�1 from

which the itemset in Ck was generated (as discussed in Section 3.1). In addition, in the kth (for k > 1) pass

we generate a new copy of the data table Tk with attributes (tid; oid) that keeps for each tid the oid of each

itemset in Ck that it supported. For support counting, we �rst generate Tk from Tk�1 and Ck and then do a

group-by on Tk to �nd Fk as follows:

insert into Tk select t1.tid, oid

from Ck; Tk�1 t1; Tk�1 t2

where t1.oid = Ck.id1 and t2.oid = Ck.id2 and t1.tid = t2.tid

8

insert into Fk select oid, item1, . . . itemk, cnt

from Ck,

(select oid as cid, count(*) as cnt from Tk

group by oid having count(*) > :minsup) as temp

where Ck.oid = cid

4.3. Subquery-based

This approach makes use of common pre�xes between the itemsets in Ck to reduce the amount of work done

during support counting. The support counting phase is split into a cascade of k subqueries. The l-th subquery

Ql (see Figure 6) �nds all tids that match the distinct itemsets formed by the �rst l columns of Ck (call it dl).

The output of Ql is joined with T and dl+1 (the distinct itemsets formed by the �rst l + 1 columns of Ck) to

get Ql+1. The �nal output is obtained by a group-by on the k items to count support as above. Note that the

�nal \select distinct" operation on the Ck when l = k is not necessary.

For pass-2 the special optimization of the KwayJoin approach is used.

insert into Fk select item1; : : : ; itemk, count(*)

from (Subquery Qk) t

group by item1,item2 . . . itemk

having count(*) > :minsup

Subquery Ql (for any l between 1 and k):

select item1; : : : iteml, tid

from T tl, (Subquery Ql�1) as rl�1,

(select distinct item1 : : : iteml from Ck) as dl

where rl�1:item1 = dl:item1 and : : : and

rl�1:iteml�1 = dl:iteml�1and

rl�1:tid = tl:tid and

tl:item = dl:iteml

Subquery Q0: No subquery Q0.

item1,...,iteml

Ck

r_l-1.item1 = dl.item1

r_l-1.item_l-1 = dl.item_l-1

select distinct

Subquery Q_l

dl
T tl

item1,...,iteml, tid

tl.item = dl.iteml
tl.item = dl.iteml

Subquery Q_l-1

r_l-1

Tree diagram for Subquery Ql

Figure 6: Support counting using subqueries

4.4. Two group-bys

This approach avoids the multi-way joins used in the previous approaches, by joining T and Ck based on

whether the \item" of a (tid, item) pair of T is equal to any of the k items of Ck. Then, do a group by on

(item1; : : : ; itemk; tid) �ltering tuples with count equal to k. This gives all (itemset, tid) pairs such that the tid

supports the itemset. Finally, as in the previous approaches, do a group-by on the itemset (item1; : : : ; itemk)

�ltering tuples that meet the support condition. For pass-2, we apply the same optimization as in the KwayJoin

approach where we avoid materializing C2.

9

Datasets # Records # Transactions # Items Avg.#items

in millions in millions in thousands per transaction

(R) (T) (I) (R/T)

Dataset-A 2.5 0.57 85 4.4

Dataset-B 7.5 2.5 15.8 2.62

Dataset-C 6.6 0.21 15.8 31

Dataset-D 14 1.44 480 9.62

Table 1: Description of di�erent real-life datasets.

insert into Fk select item1; : : : itemk , count(*)

from (select item1; : : : itemk, count(*)

from T, Ck

where item = Ck:item1 or
...

item = Ck:itemk

group by item1; : : : ; itemk, tid

having count(*) = k) as temp

group by item1; : : : ; itemk

having count(*) > :minsup

4.5. Performance comparison of SQL-92 approaches

In this section we compare the performance of the four SQL-92 approaches.

Our experiments were performed on Version 5 of IBM DB2 Universal Server installed on a RS/6000 Model

140 with a 200 MHz CPU, 256 MB main memory and a 9 GB disk with a measured transfer rate of 8 MB/sec.

We selected four real-life datasets obtained from mail-order companies and retail stores for the experiments.

These datasets di�er in the values of parameters like the number of (tid,item) pairs, number of transactions

(tids), number of items and the average number of items per transaction. Table 1 summarizes characteristics

of these datasets.

For these experiments we built a composite index (item1 : : : itemk) on Ck, k di�erent indices on each of the

k items of Ck and a (tid; item) and a (item; tid) index on the data table. The goal was to let the optimizer

choose the best plan possible. We do not include the index building cost in the total time.

In Figure 7 we show the total time taken by the four approaches: KwayJoin, 3wayJoin, Subquery and 2GroupBy.

For comparison, we also show the time taken by the Loose-coupling approach because this is the approach

currently used by existing systems. The graph shows the total time split into candidate generation time (Cgen)

and the time for each pass. From these set of experiments we can make the following observations:

� Overall, the best approach in the SQL-92 category is the Subquery approach. An important reason for

its superior performing over the KwayJoin approach is exploitation of common pre�xes between candidate

10

Data set- A

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Kway
3w

ay
J

2G
rp

Sub
Q

loo
se

Kway
3w

ay
J

2G
rp

Sub
Q

loo
se

Kway
3w

ay
J

2G
rp

Sub
Q

loo
se

Tim
e i

n s
ec

Cgen Pass 1 Pass 2 Pass 3

Support--> 0.50% 0.35% 0.20%

Data set- B

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Kway
3w

ay
J

2G
rp

Sub
Q

loo
se

Kway
3w

ay
J

2G
rp

Sub
Q

loo
se

Kway
3w

ay
J

2G
rp

Sub
Q

loo
se

Tim
e i

n s
ec

Cgen Pass 1 Pass 2 Pass 3 Pass 4

Support--> 0.10% 0.03% 0.01%

Data set- C

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Kway
3w

ay
J

2G
rp

Sub
Q

loo
se

Kway
3w

ay
J

2G
rp

Sub
Q

loo
se

Kway
3w

ay
J

2G
rp

Sub
Q

loo
se

Tim
e i

n s
ec

Cgen Pass 1 Pass 2 Pass 3 pass 4

Support--> 2.0% 1.0% 0.25%

Data set- C

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Kway
2G

rp
Sub

Q
loo

se

Kway
2G

rp
Sub

Q
loo

se

Kway
2G

rp
Sub

Q
loo

se

Tim
e i

n s
ec

Cgen Pass 1 Pass 2 Pass 3 Pass 4

Support--> 2.0% 1.0% 0.25%

Figure 7: Comparison of four SQL-92 approaches. The time taken is broken down by each pass and the candidate

generation time.

11

itemsets. Although the Subquery approach is comparable or better than the Loose-coupling approach in

some cases, for other cases involving low support values it did not complete even after taking ten times

more time than the Loose-coupling coupling approach. For instance, for Dataset-C for the high support

value of 2% the Subquery approach is better than the Loose-coupling approach. But as we descrease the

support to 1% the Subquery approach becomes almost ten times worse than the Loose-coupling coupling

approach and on further decreasing the support to 0.25% none of the SQL-92 approaches could be taken

to completion because of storage over
ow.

� The 2GroupBy approach is signi�cantly worse than the other two approaches because it involves an index-

ORing operation on k indices for each pass k of the algorithm. In addition, the inner group-by requires

sorting a large intermediate relation. The outer group-by is comparatively faster because the sorted result

is of size at most Ck which is much smaller than the result size of the inner group-by. The DBMS does

aggregation during sorting therefore the size of the result is an important factor in the total cost.

� The 3wayJoin approach is worse than the KwayJoin approach because it cannot use the pass-2 optimization

of KwayJoin and it requires writing large intermediate relatons. As shown in [AMS+96] there might be

other datasets especially ones where there is signi�cant reduction in the size of Tk as k increases where

3wayJoin might perform better than KwayJoin. One disadvantage of the 3wayJoin approach is that it

requires space to store and log the temporary relations Tk generated in each pass.

The important conclusion we drew from this study, therefore is that implementations based on pure SQL-92 are

too slow to be considered a general alternative to the existing Loose-coupling approach.

5. Support counting using SQL with object-relational extensions

In this section, we study approaches that use object-relational features in SQL to improve performance.

We �rst consider an approach we call GatherJoin and its three variants in Section 5.1. Next we present a

very di�erent approach called Vertical in Section 5.2. Finally, in Section 5.3 we present an approach based on

SQL-bodied functions. For each approach, we also outline a cost-based analysis of the execution time to choose

between these di�erent approaches. In Section 5.4 we present performance comparisons.

5.1. GatherJoin

The GatherJoin approach (see Figure 8) generates all possible k-item combinations of items contained in a

transaction, joins them with the candidate table Ck, and counts the support of the itemsets by grouping the

join result. It uses two table functions Gather and Comb-K. The data table T is scanned in the (tid, item) order

and passed to the table function Gather, which collects all the items of a transaction in memory and outputs a

record for each transaction. Each record consists of two attributes: the tid and item-list which is a collection of

all items in a �eld of type VARCHAR or BLOB. The output of Gather is passed to another table function Comb-K

which returns all k-item combinations formed out of the items of a transaction. A record output by Comb-K has

k attributes T itm1; : : : ; T itmk , which can be used to probe into the Ck table. An index is constructed on all

the items of Ck to make the probe e�cient.

12

This approach is analogous to the KwayJoin approach except that we have replaced the k-way self join of T

with the table functions Gather and Comb-K. These table functions are easy to code and do not require a large

amount of memory. It is also possible to merge them into a single table function GatherComb-K, which is what

we did in our implementation. Note that the Gather function is not required when the data is already in a

horizontal format where each tid is followed by a collection of all its items.

insert into Fk select item1; : : : ; itemk, count(*)

from Ck,

(select t2:T itm1; : : : ; t2:T itmk from T,

table (Gather(T.tid, T.item)) as t1,

table (Comb-K(t1.tid, t1.item-list)) as t2)

where t2:T itm1 = Ck:item1 and
...

t2:T itmk = Ck:itemk

group by Ck:item1; : : : ; Ck:itemk

having count(*) > :minsup

Group by
item1,....,itemk

having
count(*) > :minsup

Table function
Gather

Table function
Comb-K

T

Order by
tid, item

t2.T_itmk = Ck.itemk

t2.T_itm1 = Ck.item1

Ck
t2

Figure 8: Support Counting by GatherJoin

Special pass 2 optimization:. For k = 2, the 2-candidate set C2 is simply a join of F1 with itself. Therefore,

we can optimize the pass 2 by replacing the join with C2 by a join with F1 before the table function (see Figure 9).

The table function now gets only frequent items and generates signi�cantly fewer 2-item combinations. We apply

this optimization to other passes too. However, unlike pass 2 we still have to do the �nal join with Ck and

therefore the bene�t is not as signi�cant.

insert into F2 select tt2:T itm1; tt2:T itm2, count(*)

from (select * from T , F1 where

T:item = F1:item1) as tt1,

table (GatherComb-2(tid,item)) as tt2)

group by tt2:T itm1; tt2:T itm2

having count(*) > :minsup

Table function
GatherComb-K

having
count(*) > :minsup

T F1

Group by
tt2.T_itm1, tt2.T_itm2

T.item = F1.item1

tt2

Figure 9: Support Counting by GatherJoin in the second pass

5.1.1. Variations of GatherJoin approach.

GatherCount:. One variation of the GatherJoin approach for pass two is the GatherCount approach where

we perform the group-by inside the table function GatherComb-2. We will refer to this extended table function as

Gather-Cnt. The candidate 2-itemset C2 is represented as a two dimensional array (as suggested in [AMS+96])

inside function Gather-Cnt. Instead of outputting the 2-item combinations, the function uses the combinations

13

to directly update support counts in memory and outputs only the frequent 2-itemsets, F2 and their support

after the last transaction.

The attraction of this otion is the absence of the outer grouping. The UDF code is small since it only

needs to maintain a 2D array. We could apply the same trick for subsequent passes but the coding becomes

considerably more complicated because of the need to maintain hash-tables to index the Cks. The disadvantage

of this approach is that it can require a large amount of memory to store C2. If enough memory is not available,

C2 needs to be partitioned and the process has to be repeated for each partition. Another problem with this

approach is that it cannot be automatically parallelized.

GatherPrune:. A problem with the GatherJoin approach is the high cost of joining the large number of

item combinations with Ck. We can push the join with Ck inside the table function and thus reduce the number

of such combinations. Ck is converted to a BLOB and passed as an argument to the table function.

The cost of passing the BLOB for every tuple of R can be high. In general, we can reduce the parameter

passing cost by using a smaller Blob that only approximates the real Ck. The trade-o� is increased cost for

other parts notably grouping because not as many combinations are �ltered. A problem with this approach is

the increased coding complexity of the table function.

Horizontal:. This is another variation of GatherJoin that �rst uses the Gather function to transform the

data to the horizontal format but is otherwise similar to the GatherJoin approach. Rajamani et al. [RIC97]

propose �nding associations using a similar approach augmented with some pruning based on a variation of

the GatherPrune approach. Their results assume that the data is already in a horizontal format which is often

not true in practice. They report that their SQL implementation is two to six times slower than a UDF

implementation.

R number of records in the input transaction table

T number of transactions

N average number of items per transaction = R
T

F1 number of frequent items

S(C) sum of support of each itemset in set C

Rf number of records out of R involving frequent items = S(F1)

Nf average number of frequent items per transaction =
Rf

T

Ck number of candidate k-itemsets

C(N; k) number of combinations of size k possible out of a set of size n: = n!
k!(n�k)!

sk cost of generating a k item combination using table function Comb-k

group(n;m) cost of grouping n records out of which m are distinct

join(n;m; r) cost of joining two relations of size n and m to get a result of size r

blob(n) cost of passing a BLOB of size n integers as an argument

Table 2: Notations used for cost analysis of di�erent approaches

14

5.1.2. Cost analysis of GatherJoin and its variants. The relative performance of these variants depends

on a number of data characteristics like the number of items, total number of transactions, average length of a

transaction etc. We express the costs in each pass in terms of parameters that are known or can be estimated

after the candidate generation step of each pass. The purpose of this analysis is to help us choose between the

di�erent options. Therefore, instead of including all I/O and CPU costs, we include only those terms that help

us distinguish between di�erent options. We use the notations of Table 2 in the cost analysis.

The cost of GatherJoin includes the cost of generating k-item combinations, joining with Ck and grouping to

count the support. The number of k-item combinations generated, Tk is C(N; k) � T . Join with Ck �lters out

the non-candidate item combinations. The size of the join result is the sum of the support of all the candidates

denoted by S(Ck). The actual value of the support of a candidate itemset will be known only after the support

counting phase. However, we approximate it to the minimum of the support of all its (k � 1)-subsets in Fk�1.

The total cost of the GatherJoin approach is:

Tk � sk + join(Tk; Ck; S(Ck)) + group(S(Ck); Ck); where Tk = C(N; k) � T

The above cost formula needs to be modi�ed to re
ect the special optimization of joining with F1 to consider

only frequent items. We need a new term join(R;F1; Rf) and need to change the formula for Tk to include only

frequent items Nf instead of N .

For the second pass, we do not need the outer join with Ck. The total cost of GatherJoin in the second pass

is:

join(R;F1; Rf) + T2 � s2 + group(T2; C2); where T2 = C(Nf ; 2) � T �
N2
f � T

2

Cost of GatherCount in the second pass is similar to that for basic GatherJoin except for the �nal grouping

cost:

join(R;F1; Rf) + group internal(T2; C2) + F2 � s2

In this formula, \group internal" denotes the cost of doing the support counting inside the table function.

For GatherPrune the cost equation is:

R � blob(k �Ck) + S(Ck) � sk + group(S(Ck); Ck):

We use blob(k �Ck) for the BLOB passing cost since each itemset in Ck contains k items.

The cost estimate of Horizontal is similar to that of GatherJoin except that here the data is materialized

in the horizontal format before generating the item combinations.

5.2. Vertical

We �rst transform the data table into a vertical format by creating for each item a BLOB containing all tids

that contain that item (Tid-list creation phase) and then count the support of itemsets by merging together

these tid-lists (support counting phase). This approach is similar to the approaches in [SON95, ZPOL97]. For

creating the Tid-lists we use a table function Gather. This is the same as the Gather function in GatherJoin

except that we create the tid-list for each frequent item. The data table T is scanned in the (item,tid) order

and passed to the function Gather. The function collects the tids of all tuples of T with the same item in

15

memory and outputs a (item, tid-list) tuple for items that meet the minimum support criterion. The tid-lists

are represented as BLOBs and stored in a new TidTable with attributes (item, tid-list).

In the support counting phase, for each itemset in Ck we want to collect the tid-lists of all k items and use a

UDF to count the number of tids in the intersection of these k lists. The tids are in the same sorted order in all

the tid-lists and therefore the intersection can be done e�ciently by a single pass of the k lists. This step can

be improved by decomposing the intersect operation to share these operations across itemsets having common

pre�xes as follows.

We �rst select distinct (item1; item2) pairs from Ck. For each distinct pair we �rst perform the intersect

operation to get a new result-tidlist, then �nd distinct triples (item1; item2; item3) from Ck with the same �rst

two items, intersect result-tidlist with tid-list for item3 for each triple and continue with item4 and so on until

all k tid-lists per itemset are intersected. This approach is analogous to the Subquery approach presented for

SQL-92.

The above sequence of operations can be written as a single SQL query for any k as shown in Figure 10.

The �nal intersect operation can be merged with the count operation to return a count instead of the tid-list

| we do not show this optimization in the query of Figure 10 for simplicity.

insert into Fk select item1; : : : ; itemk, count(tid-list) as cnt

from (Subquery Qk) t where cnt > :minsup

Subquery Ql (for any l between 2 and k):

select item1; : : : iteml,

Intersect(rl�1 .tid-list,tl.tid-list) as tid-list

from TidTable tl, (Subquery Ql�1) as rl�1,

(select distinct item1 : : : iteml from Ck) as dl

where rl�1:item1 = dl:item1 and : : : and

rl�1:iteml�1 = dl:iteml�1and

tl:item = dl:iteml

Subquery Q1: (select * from TidTable)

item1,...,iteml

Ck

r_l-1.item1 = dl.item1

r_l-1.item_l-1 = dl.item_l-1

select distinct

Subquery Q_l

dl
T tl

item1,...,iteml, tid

tl.item = dl.iteml
tl.item = dl.iteml

Subquery Q_l-1

r_l-1

Tree diagram for Subquery Ql

Figure 10: Support counting using UDF

Special pass 2 optimization:. For pass 2 we need not generate C2 and join the TidTables with C2. Instead,

we perform a self-join on the TidTable using predicate t1:item < t2:item.

insert into Fk select t1:item; t2:item, cnt

from (select item1; item2, CountIntersect(t1.tid-list, t2.tid-list) as cnt

from TidTable t1; TidTable t2

where t1:item < t2:item) as t

where cnt > :minsup

16

5.2.1. Cost analysis. The cost of the Vertical approach during support counting is dominated by the cost of

invoking the UDFs and intersecting the tid-lists. The UDF is �rst called for each distinct item pair in Ck, then

for each distinct item triple and so on. Let dkj be the number of distinct j item tuples in Ck Then the number

of UDF invocations is
Pk

j=2 d
k
j . In each invocation two BLOBs of tid-list are passed as arguments. The UDF

intersects the tid-lists by a merge pass and hence the cost is proportional to 2 * average length of a tid-list.

The average length of a tid-list can be approximated to
Rf

F1
. Note that with each intersect the tid-list keeps

shrinking. However, we ignore such e�ects for simplicity.

The total cost of the Vertical approach is:

(
kX

j=2

dkj) �

�
2 �Blob(

Rf

F1
) + Intersect(

2Rf

F1
)

�

In the above formula Intersect(n) denotes the cost of intersecting two tid-lists with a combined size of n. We

are not including the join costs in this analysis because it accounted for only a small fraction of the total cost.

The total cost of the second pass is:

C2 � f2 �Blob(
Rf

F1
) + Intersect(

2Rf

F1
)g

5.3. SQL-bodied functions: SBF

This approach is based on SQL-bodied procedures commonly known as SQL/PSM [MM96]. SQL/PSMs

extend SQL with additional control structures. We will make use of one such construct for do .. end.

We use the for construct to scan the transaction table T in the (tid, item) order. Then, for each tuple

(tid, item) of T, we update those tuples of Ck that contain one matching item. Ck is extended with 3 extra

attributes (prevTid, match, supp). The prevTid attribute keeps the tid of the previous tuple of T that matched

that itemset. The match attribute contains the number of items of prevTid matched so far and supp holds the

current support of that itemset.

for this as select * from T do

update Ck set prevTid = tid,

match = case when tid = prevTid then match+1 else 1 end,

supp = case when match = k-1 and tid = prevTid then supp+1 else supp end

where item = item1 or
...

item = itemk

end for;

insert into Fk select item1; : : : ; itemk, supp

from Ck where supp > :minsupp

We omit a cost analysis of this approach because it was not competitive compared to other approaches.

17

Data set- A

0

500

1000

1500

2000

2500

Vert
Gpru

n
Gjoi

n
Gcn

t

Vert
Gpru

n
Gjoi

n
Gcn

t

Vert
Gpru

n
Gjoi

n
Gcn

t

Tim
e i

n s
ec

Prep Pass 1 Pass 2 Pass 3

Support--> 0.5% 0.35 0.20%

Data set- B

0

2000

4000

6000

8000

10000

12000

14000

Vert

Gpru
n

Gjoin
Gcn

t
Vert

Gpru
n

Gjoin
Gcn

t
Vert

Gpru
n

Gjoin
Gcn

t

Tim
e i

n s
ec

Prep Pass 1 Pass 2 Pass 3 Pass 4

Support --> 0.10% 0.03% 0.01%

Data set- C

0

2000

4000

6000

8000

10000

12000

Vert
Gprun

Gjoin
Gcnt

Vert
Gprun

Gjoin
Gcnt

Vert
Gprun

Gjoin
Gcnt

Tim
e i

n s
ec

Prep Pass 1 Pass 2 Pass 3 Pass 4

Support --> 2.0% 1.0% 0.25%

Data set- D

0

2000

4000

6000

8000

10000

12000

14000

Vert
Gjoin

Gcnt
Vert

Gjoin
Gcnt

Vert
Gjoin

Gcnt

Tim
e i

n s
ec

Prep Pass 1 Pass 2 Pass 3 Pass 4

Support --> 0.20% 0.07% 0.02%

Figure 11: Comparison of four SQL-OR approaches: Vertical, GatherPrune, GatherJoin and GatherCount on four datasets

for di�erent support values. The time taken is broken down by each pass and an initial \prep" stage where any one-time

data transformation cost is included.

5.4. Performance comparison of SQL-OR approaches

We studied the performance of six SQL-OR approaches using the datasets summarized in Table 1. Figure 11

shows the results for only four approaches: GatherJoin, GatherCount, GatherPrune and Vertical. For the other two

approaches (Horizontal and SBF) the running times were so large that we had to abort the runs in many cases.

The reason why the Horizontal approach was signi�cantly worse than the GatherJoin approach was the time

to transform the data to the horizontal format. For instance, for Dataset-C it was 3.5 hours which is almost

20 times more than the time taken by Vertical for 2% support. For Dataset-B the process was aborted after

running for 5 hours. After the transformation, compared to GatherJoin the time taken by Horizontal was also

signi�cantly worse when run without the frequent itemset �ltering optimization but with the optimization the

performance was comparable. The SBF approach had signi�cantly worse performance because of the expensive

indexing ORing of the k join predicates. Another problem with this approach is the large number of updates to

the Ck table. In DB2, all of these updates are logged resulting in severe performance degradation.

18

We �rst concentrate on the overall comparison between the di�erent approaches. Then we will compare the

approaches based on how they perform in each pass of the algorithm.

The Vertical approach has the best overall performance and it is sometimes more than an order of magnitude

better than the other three approaches.

The majority of the time of the Vertical approach is spent in transforming the data to the Vertical format in

most cases (shown as \prep" in �gure 11). The vertical representation is like an index on the item attribute. If

we think of this time as a one-time activity like index building then performance looks even better. The time

to transform the data to the Vertical format was much smaller than the time for the horizontal format although

both formats write almost the same amount of data. The reason is the di�erence in the number of records

written. The number of frequent items is often two to three orders of magnitude smaller than the number of

transactions.

Between GatherJoin and GatherPrune, neither strictly dominates the other. The special pass-2 optimization

in GatherJoin had a big impact on performance. With this optimization, for Dataset-B with support 0.1%, the

running time for pass 2 was reduced from 5.2 hours to 10 minutes.

When we compare these approaches based on time spent in each pass no single approach emerges as \the

best" for all passes of the with datasets.

For pass three onwards, Vertical is often two or more orders of magnitude better than the other approaches.

Even in cases like Dataset-B, support 0.01% where it spends three hours in the second pass, the total time

for next two passes is only 14 seconds whereas it is more than an hour for the other two approaches. For

higher passes, the performance degrades dramatically for GatherJoin, because the table function Gather-Comb-K

generates a large number of combinations. For instance, for pass 3 of Dataset-C even for support value of 2%

pass 3 did not complete after 5.2 hours whereas for Vertical pass 3 �nished in 0.2 seconds. GatherPrune is better

than GatherJoin for third and later passes. For pass 2 GatherPrune is worse because the overhead of passing a

large object as an argument dominates cost.

The Vertical approach sometimes spends too much time in the second pass. In some of these cases the

GatherJoin approach was better in the second pass (for instance for low support values of Dataset-B) whereas

in other cases (for instance, Dataset-C with minimum support 0.25%) GatherCount was the only good option.

In the latter case, both GatherPrune and GatherJoin did not complete after more than six hours for pass 2.

Further, they caused a storage over
ow error because of the large size of the intermediate results to be sorted.

We had to divide the dataset into four equal parts and ran the second pass independently on each partition to

avoid this problem.

Two factors that a�ect the choice amongst the Vertical, GatherJoin and GatherCount approaches in di�erent

passes and pass 2 in particular are: number of frequent items (F1) and the average number of frequent items

per transaction (Nf). From Figure 11 we notice that as the value of the support is decreased for each dataset

causing the size of F1 to increase, the performance of pass 2 of the Vertical approach degrades rapidly. This

trend is also clear from our cost formulae. The cost of the Vertical approach increases quadratically with F1.

GatherJoin depends more critically on the number of frequent items per transaction. For Dataset-B even when

the size of F1 increases by a factor of 10, the value of Nf remains close to 2, therefore the time taken by

GatherJoin does not increase as much. However, for Dataset-C the size of Nf increases from 3.2 to 10 as the

support is decreased from 2.0% to 0.25% causing GatherJoin to deteriorate rapidly. From the cost formula for

19

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

Average transaction length

Tim
e i

n s
ec

Vertical Gjoin

Figure 12: E�ect of increasing transaction length (average number of items per transaction)

GatherJoin we notice that the total time for pass 2 increases almost quadratically with Nf .

We validated this observation further by running experiments on synthetic datasets for varying values of

the number of frequent items per transaction. We used the synthetic dataset generator described in [AMS+96]

for this purpose. We varied the transaction length, the number of transactions and the support values while

keeping the total number of records and the number of frequent items �xed. In Figure 12 we show the total time

spent in pass 2 of the Vertical and GatherJoin approaches. As the number of items per transaction (transaction

length) increases, the cost of Vertical remains almost unchanged whereas the cost of GatherJoin increases.

5.5. Final hybrid approach

The previous performance section helps us draw the following conclusions: Overall, the Vertical approach is

the best option especially for higher passes. When the size of the candidate itemsets is too large, the performance

of the Vertical approach could su�er. In such cases, GatherJoin is a good option as long as the number of frequent

items per transaction (Nf) is not too large. When Nf is large GatherCount may be the only good option even

though it may not easily parallelize.

The hybrid scheme chooses the best of the three approaches GatherJoin, GatherCount and Vertical for each

pass based on the cost estimates outlined in Sections 5.1.2 and 5.2.1. The parameter values used for the

estimation are available at the end of the previous pass. In Section 6 we plot the �nal running time for the

di�erent datasets based on this hybrid approach.

6. Architecture comparisons

In this section our goal is to compare the �ve alternatives: Loose-coupling, Stored-procedure, Cache-Mine,

UDF, and the best SQL implementation.

For Loose-coupling, we use the implementation of the Apriori algorithm [AMS+96] for �nding association

rules provided with the IBM data mining product, Intelligent Miner [Int96]. For Stored-procedure, we extracted

20

Data set- A

0

100

200

300

400

500

600

700

800

Cach
e

Sproc
UDF

SQL
Cach

e

Sproc
UDF

SQL

Cach
e

Sproc
UDF

SQL

Ti
m

e
in

se
c

Pass-1 Pass-2 Pass-3

Support--> 0.50% 0.35% 0.20%

Data set- B

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Cac
he

Spro
c

UDF
SQL

Cac
he

Spro
c

UDF
SQL

Cac
he

Spro
c

UDF
SQL

Ti
m

e
in

se
c

Pass-1 Pass 2 Pass 3 Pass 4

SUPPORT--> 0.1% 0.03% 0.01%

Data set- C

0

500

1000

1500

2000

2500

3000

3500

4000

Cac
he

Sp

ro
c

UDF

SQ
L

Cac
he

Sp

ro
c

UDF
SQ

L

Cac
he

Sp

ro
c

UDF
SQ

L

Ti
m

e
in

se
c

Pass 1 Pass 2 Pass 3 Pass 4

Support--> 2.0% 1.0% 0.25%

Data set- D

0

2000

4000

6000

8000

10000

12000

Cac
he

Sp

ro
c

UDF

SQ
L

Cac
he

Sp

ro
c

UDF
SQ

L

Cac
he

Sp

ro
c

UDF
SQ

L

Ti
m

e
in

se
c

Pass 1 Pass 2 Pass 3 Pass 4

Support % --> 0.2% 0.07% 0.02%

Figure 13: Comparison of four architectures: Cache-Mine, Stored-procedure, UDF and SQL on four real-life datasets.

Loose-coupling is similar to Stored-procedure. For each dataset three di�erent support values are used. The total time is

broken down by the time spent in each pass.

21

the Apriori implementation in Intelligent Miner and created a stored procedure out of it. The stored procedure

is run in the unfenced mode in the database address space. For Cache-Mine, we used an option provided in

Intelligent Miner that causes the input data to be cached as a binary �le after the �rst scan of the data from

the DBMS. The data is copied in the horizontal format where each tid is followed by an encoding of all its

frequent items. For the UDF-architecture, we use the UDF implementation of the Apriori algorithm described

in [AS96b]. In this implementation, �rst a UDF is used to initialize state and allocate memory for candidate

itemsets. Next, for each pass a collection of UDFs are used for generating candidates, counting support, and

checking for termination. These UDFs access the initially allocated memory, address of which is passed around

in BLOBs. Candidate generation creates the in-memory hash-trees of candidates. This happens entirely in the

UDF without any involvement of the DBMS. During support counting, the data table is scanned sequentially

and for each tuple a UDF is used for updating the counts on the memory resident hashtree.

6.1. Timing comparison

In Figure 13, we show the performance of Cache-Mine, Stored-procedure, UDF and the hybrid SQL-OR

implementation for the datasets in Table 1. We do not show the times for the Loose-coupling option because its

performance was very close to the Stored-procedure option.

We can make the following observations:

� Cache-Mine has the best or close to the best performance in all cases. 80-90% of its total time is spent in

the �rst pass where data is accessed from the DBMS and cached in the �le system. Compared to the SQL

approach this approach is a factor of 0.8 to 2 times faster.

� The Stored-procedure approach is the worst. The di�erence between Cache-Mine and Stored-procedure is

directly related to the number of passes. For instance, for Dataset-A the number of passes increases from

two to three when decreasing support from 0.5% to 0.35% causing the time taken to increase from two

to three times. The time spent in each pass for Stored-procedure is the same except when the algorithm

makes multiple passes over the data since all candidates could not �t in memory together. This happens

for the lowest support values of Dataset-B, Dataset-C and Dataset-D. Time taken by Stored-procedure

can be expressed approximately as number of passes times time taken by Cache-Mine.

� UDF is similar to Stored-procedure. The only di�erence is that the time per pass decreases by 30-50% for

UDF because of closer coupling with the database.

� The SQL approach comes second in performance after the Cache-Mine approach for low support values and

is even somewhat better for high support values. The cost of converting the data to the vertical format for

SQL is typically lower than the cost of transforming data to binary format outside the DBMS for Cache-

Mine. However, after the initial transformation subsequent passes take negligible time for Cache-Mine. For

the second pass SQL takes signi�cantly more time than Cache-Mine particularly when we decrease support.

For subsequent passes even the SQL approach does not spend too much time. Therefore, the di�erence

between Cache-Mine and SQL is not very sensitive to the number of passes because both approaches spend

negligible time in higher passes.

The SQL approach is 1.8 to 3 times better than Stored-procedure or Loose-coupling approach. As we

decreased the support value so that the number of passes over the dataset increases, the gap widens.

22

Note that we could have implemented Stored-procedure using the same hybrid algorithm that we used for

SQL instead of using the IM algorithm. Then, we expect the performance of Stored-procedure to improve

because the number of passes to the data will decrease. However, we will pay the storage penalty of making

additional copy of the data as we did in the Cache-Mine approach. The performance of Stored-procedure

cannot be better than Cache-Mine because as we have observed that most of the time of Cache-Mine is

spent in the �rst pass which cannot be changed for Stored-procedure.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1000 2000 3000 4000

Number of transactions in 1000s

Tim
e in

 se
c

Cache Sproc SQL

Figure 14: Scale-up with increasing number of transac-

tions

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60

Average transaction length

Tim
e in

 se
c

Cache Sproc SQL

Figure 15: Scale-up with increasing transaction length

6.1.1. Scale-up experiment. Our experiments with the four real-life datasets above has shown the scaling

property of the di�erent approaches with decreasing support value and increasing number of frequent itemsets.

We experiment with synthetic datasets to study other forms of scaling: increasing number of transactions and

increasing average length of transactions. Figure 14 shows how Stored-procedure, Cache-Mine and SQL scale with

increasing number of transactions. UDF and Loose-coupling have similar scale-up behavior as Stored-procedure,

therefore we do not show these approaches in the �gure. We used a dataset with 10 average number of items

per transaction, 100 thousand total items and a default pattern length (de�ned in [AMS+96]) of 4. Thus, the

size of the dataset is 10 times the number of transactions. As the number of transactions is increased from 10K

to 3000K the time taken increases proportionately. The largest frequent itemset was 5 long. This explains the

�ve fold di�erence in performance between the Stored-procedure and the Cache-Mine approach. Figure 15 shows

the scaling when the transaction length changes from 3 to 50 while keeping the number of transactions �xed at

100K. All three approaches scale linearly with increasing transaction length.

Impact of longer names. In these experiments we assumed that the tids and item ids are all integers. Often

in practice these are character strings longer than four characters. Longer strings need more storage and cost

more during comparisons. This could hurt all four of the alternatives. For the Stored-procedure, UDF and

Cache-Mine approach the time taken to transfer data will increase. The Intelligent Miner code [Int96] maps all

character �elds to integers using an in-memory hash-table. Therefore, beyond the increase in the data transfer

and mapping costs (which accounts for the bulk of the time), we do not expect the processing time of these

three alternatives to increase. For the SQL approach we cannot assume an in-memory hash-table for doing the

mapping therefore we use an alternative approach based on table functions.

23

For SQL approach we discuss the hybrid approach. The two (already expensive) steps that could su�er

because of longer names are (1) �nal group-bys during pass 2 or higher when the GatherJoin approach is chosen

and (2) tid-list operations when the Vertical approach is chosen. For e�cient performance, the �rst step requires

a mapping of item ids and the second one requires us to map tids. We use a table function to map the tids

to unique integers e�ciently in one pass and without making extra copies. The input to the table function is

the data table in the tid order. The table function remembers the previous tid and the maintains a counter.

Every time the tid changes, the counter is incremented. This counter value is the mapping assigned to each tid.

We need to do the tid mapping only once before creating the TidTable in the Vertical approach and therefore

we can pipeline these two steps. The item mapping is done slightly di�erently. After the �rst pass, we add

a column to F1 containing a unique integer for each item. We do the same for the TidTable. The GatherJoin

approach already joins the data table T with F1 before passing to table function Gather. Therefore, we can

pass to Gather the integer mappings of each item from F1 instead of its original character representation.

After these two transformations, the tid and item �elds are integers for all the remaining queries including

candidate generation and rule generation. By mapping the �elds this way, we expect longer names to have

similar performance impact on all of our architectural options.

6.2. Space overhead of di�erent approaches

In Figure 16 we summarize the space required for three options: Stored-procedure, Cache-Mine and SQL. We

assume that the tids and items are integers. The space requirements for UDF and Loose-coupling is the same as

that for Stored-procedure which in turn is less than the space needed by the Cache-Mine and SQL approaches.

The Cache-Mine and SQL approaches have comparable storage overheads. For Stored-procedure and UDF we

do not need any extra storage for caching. However, all three options Cache-Mine, Stored-procedure and UDF

require data in each pass to be grouped on the tid. In a relational DBMS we cannot assume any order on the

physical layout of a table, unlike in a �le system. Therefore, we need either an index on the data table or need

to sort the table every time to ensure a particular order. Let R denote the total number of (tid,item) pairs

in the data table. Either option has a space overhead of 2 � R integers. The Cache-Mine approach caches the

data in an alternative binary format where each tid is followed by all the items it contains. Thus, the size of

the cached data in Cache-Mine is at most: R+ T integers where T is the number of transactions. For SQL we

use the hybrid Vertical option. This requires creation of an initial TidTable of size at most I + R where I is

the number of items. Note that this is slightly less than the cache required by the Cache-Mine approach. The

SQL approach needs to sort data in pass 1 in all cases and pass 2 in some cases where we used the GatherJoin

approach instead of the Vertical approach. This explains the large space requirement for Dataset-B.

In summary, the UDF and Stored-procedure approaches require the least amount of space followed by the

Cache-Mine and the SQL approaches which require roughly as much extra storage as the data. When the item-

ids or tids are character strings instead of integers, the extra space needed by Cache-Mine and SQL is a much

smaller fraction of the total data size because before caching we always convert item-ids to their compact integer

representation and store in binary format.

24

0

5

10

15

20

25

30

35

40

45

50

Cach
e

Sproc
SQL

Cach
e

Sproc
SQL

Cach
e

Sproc
SQL

Cach
e

Sproc
SQL

Sp
ac

e
in

 m
ill

io
ns

 o
f i

nt
eg

er
s

Cache Sort

Dataset-A Dataset-B Dataset-C Dataset-D

Figure 16: Comparison of di�erent architectures on space requirements. The �rst part refers to the space used in caching

data and the second part refers to any temporary space used by the DBMS for sorting or alternately for constructing

indices to be used during sorting. The size of the data is the same as the space utilization of the Stored-procedure

approach.

6.3. Summary of comparison between di�erent architectures

We present a summary of the pros and cons of the di�erent architectures on each of the following yard-

sticks: (a) performance (execution time); (b) storage overhead; (c) potential for automatic parallelization; (d)

development and maintenance ease; (e) portability (f) inter-operability.

In terms of performance, the Cache-Mine approach is the best option. The SQL approach is a close second |

it is always within a factor of two of Cache-Mine for all of our experiments and is sometimes even slightly better.

The UDF approach is better than the Stored-procedure approach by 30 to 50%. Between Stored-procedure and

Cache-Mine, the performance di�erence is a function of the number of passes made on the data | if we make

four passes of the data the Stored-procedure approach is four times slower than Cache-Mine. Some of the recent

proposals [Toi96, BMUT97] that attempt to minimize the number of data passes to 2 or 3 might be useful in

reducing the gap between the Cache-Mine and the Stored-procedure approach.

In terms of space requirements, the Cache-Mine and the SQL approach loose to the UDF or the Stored-

procedure approach. The Cache-Mine and SQL approaches have similar storage requirements.

The SQL implementation has the potential for automatic parallelization particularly on a SMP machine.

Parallelization could come for free for SQL-92 queries. Unfortunately, the SQL-92 option is too slow to be a

candidate for parallelization. The stumbling block for automatic parallelization using SQL-OR could be queries

involving UDFs that use scratch pads. The only such function in our queries is the Gather table function.

This function essentially implements a user de�ned aggregate, and would have been easy to parallelize if the

DBMS provided support for user de�ned aggregates or allowed explicit control from the application about how

to partition the data amongst di�erent parallel instances of the function. On a MPP machine, although one

could rely on the DBMS to come up with a data partitioning strategy, it might be possible to better tune

25

performance if the application could provide hints about the best partitioning [AS96a]. Further experiments

are required to assess how the performance of these automatic parallelizations would compare with algorithm-

speci�c parallelizations (e.g [AS96a]).

The development time and code size using SQL could be shorter if one can get e�cient implementations out

of expressing the mining algorithms declaratively using a few SQL statements. Thus, one can avoid writing and

debugging code for memory management, indexing and space management all of which are already provided in

a database system (Note that these same code reuse advantages can be obtained from a well-planned library

of mining building blocks). However, there are some detractors to easy development using the SQL alternative.

First, any attached UDF code will be harder to debug than stand-alone C++ code due to lack of debugging

tools. Second, stand-alone code can be debugged and tested faster when run against
at �le data. Running

against
at �les is typically a factor of �ve to ten faster compared to running against data stored in DBMS

tables. Finally, some mining algorithms (e.g. neural-net based) might be too awkward to express in SQL.

The ease of porting of the SQL alternative depends on the kind of SQL used. Within the same DBMS, porting

from one OS platform to another requires porting only the small UDF code and hence is easy. In contrast the

Stored-procedure and Cache-Mine alternatives require porting larger lines of code. Porting from one DBMS

to another could get hard for SQL approach, if non-standard DBMS-speci�c features are used. For instance,

our preferred SQL implementation relies on the availability of DB2's table functions, for which the interface is

still not standardized across other major DBMS vendors. Also, if di�erent features have di�erent performance

characteristics on di�erent database systems, considerable tuning would be required. In contrast, the Stored-

procedure and Cache-Mine approach are not tied to any DBMS speci�c features. The UDF implementation has

the worst of both worlds | it is large and is tied to a DBMS.

One attraction of SQL implementation is inter-operability and usage
exibility. The adhoc querying support

provided by the DBMS enables
exible usage and exposes potential for pipelining the input and output operators

of the mining process with other operators in the DBMS. However, to exploit this feature one needs to implement

the mining operators inside the DBMS. This would require major rework in existing database systems. The

SQL approach presented here is based on embedded SQL and as such cannot provide operator pipelining and

inter-operability. Queries on the mined result is possible with all four alternatives as long as the mined results

are stored back in the DBMS.

6.3.1. Other associations algorithms. There are recent proposals [Toi96, BMUT97] that attempt to min-

imize the number of data passes in the Apriori algorithm to two or three. Currently, the Stored-procedure

approach makes as many passes as the length of the largest itemset and in each pass, most of the time is spent

in reading the data from the DBMS. Therefore, by using these alternative algorithms it is possible to reduce the

time spent by Stored-procedure by as many times as the number of passes. However, the Cache-Mine approach

is almost a lower bound on the best performance possible for doing associations outside the DBMS because it

spends most of its time in the �rst pass which is the minimumamount of work any mining algorithm that works

outside the DBMS has to spend | read all of the data at least once. Since the SQL approach is competitive

with the one-pass Cache-Mine approach, we expect our conclusions to hold for other algorithms that spend

1.5 to 3 times the time spent by Cache-Mine. These alternative algorithms are not likely to help improve the

performance of the SQL implementation because they are aimed at reducing the number of passes over the data.

We have seen that with the SQL implementations hardly any time is spent on passes beyond 2 because of the

26

Vertical approach. The time spent in pass 2 is not reduced because they all require counting support of all of

C2 on the entire data anyway.

7. Proposed extensions

One of the goals of our work has been to \unbundle" complex mining operations like associations and

classi�cations into smaller primitives that can be supported e�ciently by a general purpose DBMS and be

useful for a large class of mining algorithms. Our exercise with association rules has helped us identify a few

such primitives that we believe could be generally useful in a number of other decision support applications.

Richer set operations:. We expect a richer collection of set operations to be useful for mining. For associa-

tion rules, we used three di�erent versions of the basic subset operation. For candidate generation we needed

to �nd all k � 1 subsets of a set of k elements for doing the pruning. We enumerated the subsets explicitly in

the query predicate because the size of the set and the subsets was �xed and known in advance. For support

counting, we used the Comb-K table function which generated all k subsets of a variable length set. For rule

generation, we used the GenSubset table function to generate all subsets of a variable length set. The subset

operation would also be useful in building decision trees on categorical attributes [MAR96].

Another important set operation was the intersect operation used in the Vertical approach. Most systems

already have internal implementations of this operation for doing AND and OR operations on RID (record

identi�er) lists obtained during multiple index scans [MHWC90]. In current OLAP and data warehousing

systems this operation is rampant in the popular bit-mapped indices. Our Vertical approach is curiously similar

to this bit-mapped approach with one important di�erence. Instead of performing ANDs on RIDs, we perform

the ANDs on another attribute, the transaction identi�er.

Gather-scatter operations. Another common operation is the Gather operation that can transform two

attributes in a data table to a form where for distinct values of one of the attributes (called the grouping

attribute) we collect together in a set all values of the other attribute. We can think of Gather as a glori�ed

aggregate function. Its reverse operation scatter is a special case of the subset operation where the subset size

is 1.

We used this operation in four of our SQL approaches: GatherJoin, GatherPrune, Vertical and Horizontal. To

implement the Gather table function in our queries we required data to appear in a particular order as inputs to

the table function. This would be trivial to express in SQL if order by clauses were allowed in inner subqueries.

In the absence of such a feature, we relied on our knowledge of DB2's internals to force such an order in our

experiments. Another way is to treat the Gather function as an aggregate function that simply concatenates

its arguments. Systems that have support for user-de�ned aggregate functions [SK91] can easily support such

a functionality.

There are several other decision support applications where gather could be extremely useful. For instance,

suppose we are trying to classify customers of a credit card company and the data, in addition to static customer

attributes like age, salary consists of detailed transaction data about each purchase activity of a customer. In

this case, we would like to gather all activities of a customer as one time series and extract features from these

time series for classi�cation. In OLAP applications too, data often needs to be converted back and forth from a

27

format where di�erent measures are gathered together as di�erent attributes of the same row to a format where

di�erent measures are scattered as di�erent rows.

8. Conclusion and future work

We explored various architectural alternatives for integrating mining with a relational database system. As

an initial step in that direction we studied the association rules algorithms with the twin goals of �nding the

trade-o�s between architectural options and the extensions needed in a DBMS to e�ciently support mining.

We experimented with di�erent ways of implementing the association rules mining algorithm in SQL to �nd if

it is at all possible to get competitive performance out of SQL implementations.

We considered two categories of SQL implementations. First, we experimented with four di�erent imple-

mentations based purely on SQL-92. Experiments with real-life datasets showed that it is not possible to get

good performance out of pure SQL based approaches alone. We next experimented with a collection of ap-

proaches that made use of the new object-relational extensions like UDFs, BLOBs, Table functions etc. With

this extended SQL we got orders of magnitude improvement over the SQL-92 based-implementations.

We compared the SQL implementation with di�erent architectural alternatives. We concluded that based

just on performance the Cache-Mine approach is the winner. A close second is the SQL-OR approach that was

sometimes slightly better than Cache-Mine and was never worse than a factor of two on our datasets. Both these

approaches require additional storage for caching, however. The Stored-procedure approach does not require any

extra space (except possibly for initially sorting the data in the DBMS) and can perhaps be made to be within

a factor of two to three of Cache-Mine with the recent algorithms [Toi96, BMUT97]. The UDF approach is a

factor of 0.3 to 0.5 faster than Stored-procedure but is signi�cantly harder to code. The SQL approach o�ers

some secondary advantages like easier development and maintenance and potential for automatic parallelization.

However, it might not be as portable as the Cache-Mine approach across di�erent database management systems.

This exercise has demonstrated that with a good understanding of the performance pro�le of a DBMS

engine it is possible to express the associations computation e�ciently in SQL. Often, the SQL formulation may

not be a one to one translation of the �le system code, therefore it might be necessary to design alternative

methods. This exercise also helped us identify some easy-to-implement primitives that are useful for other

mining algorithms as well.

The work presented in this paper points to several directions for future research. A natural next step is to

experiment with other kinds of mining operations (e.g. clustering and classi�cation [FPSSU96]) to verify if our

conclusions about associations hold for these other cases too. We experimented with generalized association

rules [SA95] and sequential patterns [SA96] problems and found similar results. In some ways associations is the

easiest to integrate as the frequent itemsets can be viewed as generalized group-bys. Another useful direction

is to explore what kind of a support is needed for answering short, interactive, adhoc queries involving a mix

of mining and relational operations. How much can we leverage from existing relational engines? What data

model and language extensions are needed? Some of these questions are orthogonal to whether the bulky mining

operations are implemented using SQL or not. Nevertheless, these are important in providing analysts with a

well-integrated platform where mining and relational operations can be inter-mixed in
exible ways.

28

Acknowledgements. We would like to acknowledge the help of Don Chamberlin, Bobbie Cochrane, Cli�

Leung, Guy Lohman, Eric Louie, Hamid Pirahesh, Bertold Reinwald, Eugene Shekita, Dave Simmens, Amit

Somani, George Wilson and Swati Vora for providing help with DB2 and participating in discussions. We would

like to thank Ramakrishnan Srikant for helping us with the associations code and insightful feedback.

References.

[AAB+96] Rakesh Agrawal, Andreas Arning, Tony Bollinger, Manish Mehta, John Shafer, and Ramakrishnan

Srikant. The Quest Data Mining System. In Proc. of the 2nd Int'l Conference on Knowledge

Discovery in Databases and Data Mining, Portland, Oregon, August 1996.

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules between sets of

items in large databases. In Proc. of the ACM SIGMOD Conference on Management of Data, pages

207{216, Washington, D.C., May 1993.

[AMS+96] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and A. Inkeri Verkamo.

Fast Discovery of Association Rules. In Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic

Smyth, and Ramasamy Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining,

chapter 12, pages 307{328. AAAI/MIT Press, 1996.

[AS95] Rakesh Agrawal and Ramakrishnan Srikant. Mining Sequential Patterns. In Proc. of the 11th Int'l

Conference on Data Engineering, Taipei, Taiwan, March 1995.

[AS96a] Rakesh Agrawal and John Shafer. Parallel mining of association rules. IEEE Transactions on

Knowledge and Data Engineering, 8(6), December 1996.

[AS96b] Rakesh Agrawal and Kyuseok Shim. Developing tightly-coupled data mining applications on a rela-

tional database system. In Proc. of the 2nd Int'l Conference on Knowledge Discovery in Databases

and Data Mining, Portland, Oregon, August 1996.

[BMUT97] Sergey Brin, Rajeev Motwani, Je�rey D. Ullman, and Shalom Tsur. Dynamic itemset counting and

implication rules for market basket data. In Proc. of the ACM SIGMOD Conference on Management

of Data, May 1997.

[Cha96] Don Chamberlin. Using the New DB2: IBM's Object-Relational Database System. Morgan Kauf-

mann, 1996.

[FPSSU96] Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, edi-

tors. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.

[HFK+96] J. Han, Y. Fu, K. Koperski, W. Wang, and O. Zaiane. DMQL: A data mining query language for

relational datbases. In Proc. of the 1996 SIGMOD workshop on research issues on data mining and

knowledge discovery, Montreal, Canada, May 1996.

[HS95] Maurice Houtsma and Arun Swami. Set-oriented mining of association rules. In Int'l Conference

on Data Engineering, Taipei, Taiwan, March 1995.

29

[IBM97] IBM Corporation. DB2 Universal Database Application programming guide Version 5, 1997.

[IM96] T. Imielinski and Heikki Mannila. A database perspective on knowledge discovery. Communication

of the ACM, 39(11):58{64, Nov 1996.

[Int96] Internationl Business Machines. IBM Intelligent Miner User's Guide, Version 1 Release 1, SH12-

6213-00 edition, July 1996.

[IVA96] T. Imielinski, A. Virmani, and A. Abdulghani. Discovery Board Application Programming Interface

and Query Language for Database Mining. In Proc. of the 2nd Int'l Conference on Knowledge

Discovery and Data Mining, Portland, Oregon, August 1996.

[Kul94] Krishna Kulkarni. Object oriented extensions in SQL3: a status report. Sigmod record, 1994.

[MAR96] Manish Mehta, Rakesh Agrawal, and Jorma Rissanen. SLIQ: A fast scalable classi�er for data

mining. In Proc. of the Fifth Int'l Conference on Extending Database Technology (EDBT), Avignon,

France, March 1996.

[MHWC90] C. Mohan, D Haderle, Y. Wang, and J. Cheng. Single table access using multiple indexes: op-

timization, execution, and concurrency control techniques. In Proc. International Conference on

Extending Database Technology, pages 29{43, 1990.

[MM96] Jim Melton and Nelson Mattos. SQL3 | a tutorial. Twenty-second international conference on

Very large data bases, tutorial, September 1996.

[MPC96] R. Meo, G. Psaila, and S. Ceri. A new SQL like operator for mining association rules. In Proc. of

the 22nd Int'l Conference on Very Large Databases, Bombay, India, Sep 1996.

[MS92] J. Melton and A. Simon. Understanding the new SQL: A complete guide. Morgan Kau�man, 1992.

[Ora92] Oracle. Oracle RDBMS Database Administrator's Guide Volumes I, II (Version 7.0), May 1992.

[PR98] Hamid Pirahesh and Berthold Reinwald. SQL table function open architecture and data access

middleware. In SIGMOD, 1998.

[RIC97] Karthick Rajamani, Bala Iyer, and Atul Chaddha. Using DB/2's object relational extensions for

mining associations rules. Technical Report TR 03,690., Santa Teresa Laboratory, IBM Corporation,

sept 1997.

[SA95] Ramakrishnan Srikant and Rakesh Agrawal. Mining Generalized Association Rules. In Proc. of the

21st Int'l Conference on Very Large Databases, Zurich, Switzerland, September 1995.

[SA96] Ramakrishnan Srikant and Rakesh Agrawal. Mining Sequential Patterns: Generalizations and Per-

formance Improvements. In Proc. of the Fifth Int'l Conference on Extending Database Technology

(EDBT), Avignon, France, March 1996.

[SK91] M. R. Stonebraker and Greg Kemnitz. The POSTGRES next generation database management

system. Communications of the ACM, 34(10), 1991.

30

[SK97] A. Siebes and M. L. Kersten. KESO: Minimizing Database Interaction. In Proc. of the 3rd Int'l

Conference on Knowledge Discovery and Data Mining, Newport Beach, California, August 1997.

[SON95] A. Savasere, E. Omiecinski, and S. Navathe. An e�cient algorithm for mining association rules in

large databases. In Proc. of the VLDB Conference, Zurich, Switzerland, September 1995.

[TAC+98] Dick Tsur, Serge Abiteboul, Chris Clifton, Rajeev Motwani, and Svetlozar Nestorov. Query
ocks:

A generalization of association rule mining. In SIGMOD, 1998. to appear.

[Toi96] Hannu Toivonen. Sampling large databases for association rules. In Proc. of the 22nd Int'l Con-

ference on Very Large Databases, pages 134{145, Mumbai (Bombay), India, September 1996.

[ZPOL97] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New Algorithms for Fast Discovery of

Association Rules. In Proc. of the 3rd Int'l Conference on Knowledge Discovery and Data Mining,

Newport Beach, California, August 1997.

31

