
ODE (Object Database and Environment): The Language and the Data Model
R. Agrawal

N. H. Gehani

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT
ODE is a database system and environment based on the
object paradigm. It offers one integrated data model for both
database and general purpose manipulation. The database is
defined, queried and manipulated in the database programming
language 0++ which is based on C-t-+. 0++ borrows and
extends the object definition facility of C++, called the class.
Classes support data encapsulation and multiple inheritance.
We provide facilities for creating persistent and versioned
objects, defining sets, and iterating over sets and clusters of
persistent objects. We also provide facilities to associate
constraints and triggers with objects. This paper presents the
linguistic facilities provided in 0++ and the data model it
supports.

1. INTRODUCTION
The object paradigm is a natural way of organizing data as it
allows users to structure, retrieve and update data in terms of
the application domain. ODE is a database system and
environment based on the object paradigm. The database is
defined, queried and manipulated using the database
programming language 0++ (it was called 0 in earlier
versions of this paper). 0++ is based on C++ [52]; it borrows
and extends the object definition model of C++. This paper is
an introduction to the linguistic facilities provided in 0++ and
the data model it supports.

Although conventional programming language objects and
database objects are similar in that they encapsulate object
properties, there are several differences. For example,
database objects persist beyond the lifetime of the program
creating them. Many database applications, such as
computer-aided design and software management, require the
capability to create and access multiple versions of an object
[9,24,31,53]. Object versions are also important for historical
databases, such as those used in accounting, legal, and
financial applications, that must access the past states of the
database [20,45]. Support for active databases, such as those
used in computer integrated manufacturing, power distribution
network management, and air-traffic control, requires the
capability to attach with objects conditions and actions that are
triggered when the conditions are satisfied [21,51]. Finally,
the ability to associate constraints with objects is necessary to
ensure database integrity [37]. Programming languages

Permission to copy without fee all or part of this material is granted provided that

the copies are not made OT distributed for direct commercial advantage, the ACM

copyright notice and the title of the publication and its date appear, and notice is

given that copying is by permission of the Association for Computing Machinery.

To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1989 ACM 0-89791-317-5/89/ooO5/0036 $1.50

typically do not support persistent objects (with the exception
of files) or multiple object versions, nor they do provide
facilities for associating constraints and triggers with objects.
Consequently, if a conventional programming language is to
be used as a database programming language, it must be
augmented with facilities that support the needs of database
systems.

Ott provides one integrated model for both database and
general purpose manipulation. We use the C++ object model,
called the cluss, as the basis for the object model of O++.
The class facility supports data encapsulation and multiple
inheritance. 0++ extends C++ classes by providing facilities
for creating and manipulating persistent objects and their
versions, and associating constraints and triggers with objects.
A major criticism of the current object-oriented databases and
languages is that they lack the capability to pose arbitrary
“join” queries, and that query processing “smells” of pointer
chasing as in CODASYL database systems [36]. 0++
alleviates these problems by providing iterators that allow sets
of objects to be manipulated almost as declaratively as the
database query languages based on relational calculus. The
set iteration facility of O++ also allows the expression of
recursive queries [2, lo], a major concern in deductive
databases. The iterators can be qualified with clauses that
specify iteration subsets and order, which can be used to
advantage in query optimization. Many of the 0++ facilities
can be found in other languages and systems. Our major
contribution lies in providing a clean fusion of the advances in
both database and programming language research within an
object-oriented framework.

Virtues of object-oriented database systems have been extolled
elsewhere (see, for example, [12.23,25-U, 29,30,33-351).
0++ shares with these systems the goals of providing a rich
type system to model complex and composite objects. It
provides encapsulation to hide implementation details,
supports multiple inheritance for organizing objects in
taxonomies in which the more specialized objects inherit the
data and functions of more generalized objects, separates type
definition from type instantiation, allows explicit specification
of relationships between objects, and supports object identities
that allows persistent database objects to have an existence
independent of their values. Some extensible database
projects, such as [13.18,40,45,46,49] also have similar goals.
0++ is in the same spirit as the work done in designing
database programming languages, such
[7,11.20,38.44,47,48,50,54]; it strives to be the sing:
language for data definition, data manipulation and general
computation to avoid the problems arising out of “impedance
mismatch” [20]. 0++ also shares the concerns of the
persistent programming languages, such as [6,17,39,4143];
persistence is a property of object instances and not types, and
persistent objects are accessed and manipulated in much the
same way as volatile objects. Ott- is related to the language
E [42.43] in that O++, like E. also uses the C++ object model

36

and adds persistence to it. Vbase [7] and 02 [33] also seek to
blend an object-oriented data model with C.

In this paper, we concentrate on the data modeling and the
query processing aspects of 0~. We do not cover
concurrency issues and some systems-oriented features such as
schema evolution, authorization, security, etc. We also do not
discuss the environment and the implementation strategies.
These issues will be discussed in future papers. We have tried
to be precise with the language constructs, but omitted details
when they are obvious. Although we will occasionally refer
to transactions, we do not discuss them in this paper. For the
purpose of this paper, any 0++ program that interacts with the
database will be considered to be a single transaction. The
rationale behind the &sign of 0++ is discussed in [3].

The organization of the rest of the paper is as follows.
Section 2 describes the data structuring facilities provided in
O++. Section 2.1 gives an overview of the object definition
facility, Section 2.2 discusses the inheritance model, Section
2.3 presents the persistence model, Section 2.4 discusses how
persistent objects of the same type are grouped together in a
cluster, and Section 2.5 describes the set data type. Section
2.6 discusses persistence in some related C-based
languages/systems: E, Vbase. and 02. Section 3 presents the
query processing facilities. Section 4 presents our versioning
model, and Sections 5 and 6 discuss the facilities for
associating constraints and triggers respectively with objects.
Our conclusions are presented in Section 7.

2. DATA STRUCTURING CONSTRUCTS
A database is a collection of persistent objects, each identified
by a unique identifier, called the object identifier (id) that is its
idetiity [32]. We shall also refer to this object id as a pointer
to a persistent object. We visualize memory as consisting of
two parts: volatile and persistent. Volatile objects are
allocated in volatile memory and are the same as those created
in ordinary programs. They are allocated on the program
stack or on the heap and their lifetime is bounded by the life
of the program. Persistent objects are allocated in persistent
store and they continue to exist after the program that created
them has terminated. Interaction with these objects is routed
through an object manager, but this is hidden from the
programmer.

2.1 Object Definitions: C++ Classes
Class declarations consist of two parts: a specification (type)
and a body. The specification represents the class “user
interface”. It contains all the information necessary for the
user of a class, and also for the compiler to allocate class
objects. The body consists of the bodies of functions declared
in the class specification but whose bodies were not given
there.

Class specifications have the form

class name (
private components

public:
public components

):

The private components of a class are data items and
functions that implement class objects. These represent
internal details of the class and cannot be accessed by the user
of a class. The public class components can be data items,
constructors, destructors, member functions (operators), and
friend functions (operators). The public components, which

represent the class user interface, are the components that the
user of a class can reference. Constructors are functions that
are called automatically to construct a class value. Member
and friend functions are used to manipulate class objects.
Destructors are functions that are called automatically when a
class object is explicitly deleted or when its scope is left.

We illustrate the use of the class facility by defining a class
item. Here is its specification:

class item (
Name nm:
double wt: /* in kg */

public:
item(Name xname, double xwt):
Name name();
double weight-lbs();
double weight-kg();

1;

The private part of the specification of class item consists of
the declarations of two variables: nm and wt. The public part
consists of a constructor function item (has the same name as
the class name) and three member functions name,
weight-lbs and weight-kg.

Here are the bodies of the member functions:

item::item(Name xname, double xwt)

nm = xname;
wt = xwt;

Name item::name()

return nm:
1
double item::weight-kg()
(

return wt;

double item::weight-lbs()
(

return (wt * 2.205);
1

2.2 Inheritance
Inheritance allows objects to be organized in taxonomies in
which the more specialized objects inherit properties, i.e., the
data and functions, of more generalized objects. Similar
objects with a few different properties can be modeled by
specifying a common part, called the base (super) class, for
the common properties and then deriving specialized classes
from this base class. Derived classes can be used to construct
heterogeneous data structures such as lists with different types
of elements because a pointer to a class can point to any
object whose type is derived from this class.

A derived class is specified by following its name with the
name of the base class. A derived class inherits the data items
as well as the member functions of the base class. As an
example, consider the following class stockitem that is
derived from class it em:

37

class stockitem: public item (
int consumption:/*qty consumed per year*/
int leadtime; /*lead time in days*/

public:
int qty:
double price;
stockitem(Name iname,double iwt,int xqty,

int xconsumption,
double xprice, int xleadtime) ;

int eoq(): /*economic order quantity*/
1;

stockitem is the same as item except that it contains other
information such as the quantity in stock, its consumption Per
year, its price and the lead time necessary to restock the item.
Also, stockitem has its own constructor function and
additional member functions.

2.2.1 Multiple Inheritance Multiple inheritance allows a
new class to be derived from multiple classes. For exampIe,
class stockitem can be derived from the two classes item
and supplier, as a result of which stockitem will have
the properties of both item and supplier. Fit, here is
the specification of class supplier:

class supplier {
Name nm;
Addr addr;

public:
supplier(Name xname, Addr xaddr):
Name name();
Addr addresso:

1;

Here is the new specification of class stockitem:

class stockitem: public item, public supplier (
int consumption;
int leadtime;

public:
int qty;
double price;
stockitem(Name iname,double iwt,int xqty,

int xconsumption, double xprice,
int xleadtime,Name sname, Addr saddr);

int eoq0; /*economic order quantity*/
int reorder-level();
Name itemname0:
Name suppliernameo;
Name name0;

1;

Note that each of the base classes item and supplier has
a member function named name. Ambiguities are resolved by
using explicit qualification as shown below, for example, in
the bodies of the member functions itemname and
suppliername:

Name stockitem::itemname()
(return item::nameO; 1

Name stockitem::suppliername()
{ return supplier::name(): 1

If an application requires that the name member function for
stockitem yield the supplier’s name, then name can be
redefined as follows:

Name stockitem::name()
(return supplier::nameO;)

2.3 Persistent Objects
When incorporating Persistence in Ott, we kept the following
principles in perspective:

9 Persistence should be orthogonal to type [S]. Persistence
should be a property of object instances and not fypes. It
should be Possible to allocate objects of any type in either
volatile or Persistent store.

l There should be no run-time penalty for code that does not
deal with Persistent objects.

l Allocation and manipulation of Persistent objects should be
similar to the manipulation of volatile objects. For
example, it should be Possible to move objects from
Persistent store to volatile store and vice versa in much the
same way as it is Possible to move objects from the stack
to the heap and vice versa

n Inadvertent fabrication of object identities should be
prevented.

. Language changes should be kept to a minimum.

Persistent objects are referenced using Pointers to Persistent
objects (that is, their identities); these Pointers can be allocated
in either the heap or the stack but Persistent objects must
themselves be allocated in Persistent store. Persistent objects
are allocated and deallocated in a manner similar to heap
objects. Persistent storage operators pnew and pdelete are
used instead of the heap operators new and delete. If
successful, pnew returns a Pointer to the Persistent object
created

by
it; otherwise, it returns the null Pointer. Here is an

example:

persistent stockitem *psip;
. . .
psip = pnew stockitem(ini&zlvalues):

Note that psip is pointer to a Persistent stockitem object,
and ti a Persistent Pointer to a stockitem object. Thus,
syntactically the keyword persistent is a type qualifier
(like const and volatile in ANSI C[l]) and not a storage
specifier, even though it refers to a type of storage. Also,
psip is allocated on stack (not in the Persistent store), but
pnew allocates the stockitem object in Persistent store and
its id (returned by pnew) is saved in psip.

Persistent objects can be copied to volatile objects and vice
versa using simple assignments:

*sip = *psip; . . *psip = *sip;

Components of persistent objects are referenced like the
components of volatile objects, e.g.,

w = psip->weight-kg();

A Persistent object can be deleted with the pdelete
operator. e.g..

pdelete psip;

deletes the object Pointed to by psip.

2.4 Dual Pointers
Pointers to Persistent objects always refer to persistent objects
and ordinary Pointers to volatile objects. Consequently, it is
not Possible to write a function that accepts as an argument a
Pointer to either volatile or persistent object. To allow writing
of such functions. we introduce the notion of a dual Pointer:

1. Creation ofs pcrsistcntobjectis syntactically similar tothcc~ticn of a
volatilcobjccc:
stockitem *sip;
. . .
sip = new stockitem (inifialvalws);

38

one that can refer to a volatile or persistent object. Whether
the object referenced is volatile or persistent is determined at
run time. Pointers to volatile and persistent objects can be
assigned to dual pointers. But dual pointers that refer to
volatile objects can only be assigned to pointers to volatile
objects and dual pointers that refer to persistent objects only to
pointers to persistent objects. Here is an example illustrating
the use of dual pointers:

class node (

dual node *next;
public:

. . .
dual node *add(dual node *n) ;

1;

persistent node *p, *proot;
/*proot: list in persistent store*/

node *v, *vroot;
/*vroot : list in volatile store*/

. . .
proot = proot->add(p);
vroot = vroot->add(vJ;

2.5 Clusters of Persistent Objects
All persistent objects of the same type are grouped together
into a clusfer; the name of a cluster is the same as that of the
corresponding type, that is, clusters are type extents [16].
Before creating a persistent object, the corresponding cluster
must exist; it is created by invoking the create macro’ -
in this program or in another program:

int create(lypc-name):

type-name is the name of the cluster being created.3

A cluster can be destroyed by invoking the destroy macro:

int destroy (type-name);

type-me is the name of the cluster being removed. Note
that all the objects in the cluster are destroyed. destroy
returns 1 if successful; otherwise, it returns 0.

25.1 Subclusters Sometimes it may be desirable, for
logical organization or efficiency reasons, to group objects in a
cluster into subclusters so that they can be collectively
referenced. For example, subclusters can be used to partition
a student cluster into groups corresponding to the dorms in
which the students live.4 Subclusters are also created and
destroyed with the create and destroy macros. A
subcluster name is a string qualified by the coxmsponding
cluster (object type) name, e.g.,

create(student::"Cascadilla Hall"):

Objects are specified to belong to a specific subcluster when
they are allocated in persistent store, e.g.,

sp = pnew student("Jack")::"Cascadilla Hall";

2.4 Sets
0++ supports multisets (sets whose elements do not have to
be unique). Sets are a convenient mechanism for
manipulating a collection of objects. Set declarations are
similar to array declarations but, unliie arrays, set subscripting
is not allowed. Here are some examples:

persistent part *partset<MAX>;
real stlOO>;

When declaring set parameters, the maximum number of
elements in a set need not be specified:

userid users<>;

The set operations supported are assignment, union, difference,
insertion, and deletion. Set elements are accessed by using the
set iteration facility (discussed later).

2.7 Related C-based Approaches
The database implementation language E [42,43] also started
with C++ and added persistence to it. In E, persistent objects
must be of special types called “db” types. Objects of such
types can be volatile or persistent. Persistent objects can be
allocated statically by using the storage class persistent in
object definitions or they can be allocated dynamically by
using the predefined db class file. Other features of E
include generic classes and iterators.

Avalon/C++ [22]. also provides facilities for persistence.
Types whose objects are to be allocated in persistent store
must be derived from the class recoverable. A persistent
object is accessed by explicitly bringing it to volatile store
from persistent store (called “pinning” the object), accessing
the object, and then moving the object back to persistent store
(called “unpinning” the object). The pinning and unpinning
operations are provided by the class recoverable.

Vbase [7] combines an object model with C. It presents to
the user two languages: the type definition language TDL for
specifying classes and operations, and the C superset COP for
writing methods to implement the operations. The 02 system
[33] also integrates an object model with C. Type definitions
are written in one language and methods are written in the C
superset C02. A class in 02 implicitly owns a persistent
collection of objects of the class.

3. QUERY PROCESSING CONSTRUCTS
One misgiving researchers have with the current object-
oriented databases is that they may take us back to the days of
CODASYL databases in which data is accessed by “using
pointers to navigate through the database” [36]. In object-
oriented databases. the pointers are the object ids. By
introducing clusters, sets, and high-level iteration facilities for
accessing objects in clusters and sets, O++ provides an
alternative to using object ids to navigate through the
database. Another criticism of object-oriented databases is
that they lack the capability to express arbitrary “join”
queries [36]. In Ott, arbitrary joins can be expressed by
iterating over the clusters to be joined and the join conditions
can be specified as the iteration conditions.

3.1 Iterating Over Sets and Clusters
Values of the elements of a set, a cluster or a subcluster can
be accessed with a for loop of the form’

39

for i in set-or-clurter-or-subclurter
[suchthat-clause] [by-c&use] statement

The loop body is executed once for each element of the
specilied set, the cluster or the subcluster; the loop variable i
is assigned the element values in turn. The type of i must be
the same as the element type.

The suchthat-clause has the form

suchthat

and the by-clause has the form

by (eb [, cwl)

The suchthat and by expressions est and ebr must contain
the loop variable i. If the suchthat and by expressions are
omitted. then the for loop iterates over all the elements of
the specified grouping in some implementation-dependent
order. The suchthat clause ensures that iteration is
perfomed only for objects satisfying expression eJI. If the by
clause is give& then the iteration is performed in the order of
non-decreasing values of the expression eW If the by clause
has only one parameter, then e& must be an arithmetic
expression. If the by clause has two parameters, then the
second parameter cmp must be a pointer to a function that
compares two elements of type t. where t is the type of the by
expresslon ebr. cmp compares its arguments and returns an
integer greater than, equal to, or less than 0, &pending upon
whether its first argument is greater than, equal to, or less than
its second argument.

As an example, here is a program segment that illustrates
iteration over clusters and sets. It prints the name of people
along with the names of their children whose profession is
computer science (CS):

class person (
public:

Name name;
char sex;
Name Profession:
persistent person *children<>;

);
. . .
for p in person

for c in p->children
suchthat(c->Profession == Name("CS"))

printf("%s %s\n", p->name, c->name);

Although the suchthat and by clauses can be simulated by
using an if statement within the loop body and by sorting the
set of values in volatile memory, these clauses facilitate
optimization, similar to those performed in relational database
systems, as follows: we expect to pass these clauses to the
object manager to select only the desired object ids and
deliver them in the right or&r for the for loop.

3.1.1 Iterating Over Cluster Hierarchies Clusters mirror
the hierarchy relationship of the corresponding types. If type
x is derived from type y, then the corresponding clusters also
have the same relationship. It is sometimes necessary to
collectively access objects in a cluster and those in related

5. Tbesquarebrackets [and]indicateanoptionalitean. The. suchthat and
byclauscs~ba~onsimilPrclausesinSQL[19]andCancuPen~C[28).
Similar for 100~s have been Provided, among orhers, in Pascal/R [48],
Rig.4 [44],Plaii [St] and TAlis/Owl[39] and Vbase [7k

“derived” clusters.6 This can be done with the forall loop
which has the form

f o ra 11 oid in cluster [suchthat-clause] [by-clause] statement

Except for the inclusion of objects in derived clusters, the
semantics of the forall loop are the same as those of the
for loop for iterating over a cluster. Thus, given the class
item andthederivedclass stockitemas defined insection
2, the statement

for ip in item
tot-wt += ip->weight-kg;

computes the weight of only objects of type item, but the
statement

forall ip in item

tot-wt += ip->weight-kg:

computes the weight of all items including stockitems.

3.1.2 Arbitrary Joins The for and forall loops can
have multiple loop variables:’

for i, in set-or-cluvter-or-subcluster, ,
i. in set-or-cluster-or-subclurter,

[suchthat (e,,)] [by (eti)] statement

forall oid, in cluster,, oid,, in cluster,
[suchthat (e,,) 1 [by (eb.)] statement

The loop body will be executed for every combination of
values for the loop variables that satisfy the suchthat
expression and in the or&r speci6ed by the by clause.

These loops allow the expression of operations with
functionality of the arbitrary relational join operation. For
example, we can write

for e in employee, d in dept
suchthat(e->dno == d->dno)

printf("%s %s\n", e->name, d->name):

to print the name of the employee from the employee object
and the name of the department from the dept object.

3.1.3 Type Test The object type can be determined with the
is operator which has the form

e is type

This expression evaluates to true if expression e is of the
specified type, and to false otherwise. Note that if e is of a
dual pointer type, then the is operator will return true if type
is the dual pointer type, or either the corresponding ordinary
pointer type or the corresponding persistent pointer vpe
depending upon whether e refers to a volatile object or a
persistent object.

Suppose that we want to compute and print the average
income of university employees and. separately, that for
faculty and students in a university database (employees can
be other than faculty and students, e.g., staff). Class person
has the member function income, and classes student and
faculty have been derived from it. Here is the code to
perform the above computation:

6. POSTQUIX [45] allows a * to be specified after the relation name to
ntricvchlpl~~thenamedrelationandpllrelations tbatinheritattxibut
fmn it. Orion [12] also provides similar function&y.

7. Rigel[44]plso~owsmultipleloopvariables inits for loop.

40

np = ns = nf = incomep = incomes = incomef = 0;
forall p in person {

incomep += p->income(); np++;
if (p is persistent student *)

(incomes += p->income(): ns+t;)
else if (p is persistent faculty *)

{ incomef += p->income(); nf++;)
)

3.2 Fixpoint Queries
Aho and Ullman [5] have shown that the least fixpoint
operator is an essential addition to the relational query
languages, and considerable research has been devoted to
developing notations for expressing least fixpoint queries and
designing algorithms for evaluating them (see, for example,
[2, lo]). When iterating over a set or a cluster, we allow
iteration to also be performed over the elements that are added
during the iteration, which allows the expression of recursive
queries [5]. Thus, given the class person as above, the
following statements finds all the descendems of abraham:

for p in person
suchthatcp->name == Name("abraham"))

descendants=p->children:/*recursion basis*/
for d in descendants

descendants += d->children; /*recursion*/

Modifying a set or a cluster while iterating over it makes the
by clause inoperative because such modification is likely to
destroy the ordering. Deleting an element from the set or
cluster means that the loop will not iterate over this element
provided such an iteration has not already taken place or is not
currently taking place.

4. VERSIONING
Many database applications, such as computer-aided design
and software management, require the capability to create and
access multiple versions of an object [9,24,31,53]. Object
versions are also important for historical databases, such as
those used in accounting, legal, and tinaucial applications that
require accesses to the past states of the database [20,45].

In ODE, all persistent objects can have versions and there is
no pre-defined limit on the number of versions that an object
can have.’ The current version of an object is updatable, but
old versions may be read-only depending upon the
implementation. As in the case of persistence, versioning is
an object property and not a class property. Objects belonging
to the same class can have different numbers of versions.

Depending upon the application, one may want to access the
current version or a specific version. For example, an
address-book object that keeps track of current addresses
would like to reference the latest versions of person objects (to
access their latest addresses). On the other hand, a software
configuration object may want to reference speciftc versions of
objects representing component modules.’

8. Weareassumingthat wet~~ealorge.ifnotinfinitc, pasisteetstorc. Pn-
s&tent store may be hiaarcbically organid and old versions may be
flusbed out to a slowa medium. An implementaticm may impose 8 limit on
the number of vvsions that can be created.

9. Orion [12] and Iris [14] also provide facilities for specific reference to a par-
ticular version and gawric reference to a versioned object

Our version model supports both of these modeling
requirements. An object and all its versions are treated as one
logical object with one id. A pointer to a persistent object can
refer to a logical object in which case it is called a logical id
or to a specific version of an object in which case it is called a
version pointer. Accessing an object using a logical object id
results in access to the current version of the object.

Thus, the address-book object can refer to the current versions
of person objects using logical ids. When the address of a
person is changed and a new version of the person object
created, no change is required to the address-book object. On
the other hand. version pointers are used to refer to specific
versions, e.g., in the software configuration object. O++
provides macros for coercing version pointers to logical object
ids and vice versa.

Updating a persistent object does not automatically create a
new version. A new version is created explicitly by calling
the macro newversion. The effect of the call

newversion

where p is a logical object id is to create a new version of the
specified object. lo Henceforth, p refers to the new version.
Logically, the contents of the new version will be identical to
those of the previous version.

Macro previous can be used for accessing different
versions of an object. It takes a pointer to a persistent object
and a non-negative integer n and returns a pointer to the n*
previous version; if there is no such version, then previous
returns the null pointer. Thus, the total salary over the last
five years of an employee can be computed as:

persistent Employee *e, *ve;
. . .
for(i=O; i < 5: i++)

if ((ve = previouste, i)) == NULL)
error("%s has worked < 5 yrs\n",e->name);

total t= ve->salary;
1

Given a logical object id, operator pdelete deletes the
object and all its versions. Given a version pointer, pdelete
deletes the specified version.”

5. CONSTRAINTS
Constraints are used to maintain a notion of consistency
beyond what is typically expressible using the type system
[37]. Updates that violate the specified constraints should not
be permitted. Interpretations of consistency are usually
application specific and may be arbitrarily complex.
Constraints, which are Boolean conditions, can be associated
with classes. Objects must satisfy all the constraints
associated with the wrresponding class. Constraints can also
be used in query optimization.

Constraints are specified in the wnstraint section of a class
definition as follows:

10. In this paper. we. will only describe tbc linear vasioning mechanism. 0++
allows the version graph of an object to be a ute; see [4] for details.

11. Implementatices may choose not to allow the deletion of specific versions.

41

constraint:
constraint, ;
comtraint, ;

trigger:
[perpetual] TI (parameter-&cl,) : trigger-body,
[perpetual] T, (parameter-&cl,) : trigger-body,

. . .
constraint, ;

CWWr&tti is a Boolean expression that refers to components
of the specified class. Constraints are checked at the end of
constructor and member (friend) function calls. Therefore,
although we do not prohibit accessing components of an
object directly (if the components are specified to be public),
it is the programmer’s responsibility to ensure that such
accesses do not violate any constraints (because no checking
will be done automatically).

Here is an example of a constraint:

constraint:
supplier-state == Name("NY") I I

supplier-state == Name("");

If a constraint is not satisfied, then the access is aborted” and
the object restored to its original state.

5.1 Constraint Inheritance
A derived class inherits the constraints of its parent class and
new constraints can be added. Consequently, constraints can
be used to specialize classes, as in

class female: public person {
public:

. . .
constraint:

se* cc ' f' 11 sex == 'F';
1;

Such constraint-based specializations are useful in many
applications, e.g., in frame-based knowledge representation
systems [151.

6. Triggers
Triggers (also called alerters or monitors), like integrity
constraints, monitor the database for some conditions, except
that these conditions do not represent consistency violations
[37]. When tigger conditions become true, the associated
trigger action is executed. Triggers are necessary for
supporting active databases, such as those used in computer
integrated manufacturing, power distribution network
management. air-traffic control, etc. and are found in many
database systems such as F’OSTGRES [51], HiF’AC [21], and
Vbase [7].

Triggers are associated with objects. There are two types of
triggers: once-only (default) and perpetual (specified using the
keyword perpetual).13 A once-only trigger is automatically
deactivated after the trigger has “fired”, and it must then be
reactivated explicitly if desired. On the other hand, a
perpetual trigger is automatically reactivated after being fired.

Triggers are specified within class definitions:

12 Violation da constraintwill causethetransactio~~ of which this access is a
paa of to he shorted and rolled hack at a later time,we may provide addi-
tionalexcepticmhandlingmechanisms whichwillallowtheclassdesigncror
theuscrto~dtotheviolationofaconstraint.

13.FQSTGRES [Sl]has similartriggem

. . .
[perpetual] T. Qxmuneter-decl,,) : trigger-body,

Ti sre the trigger names. Trigger parameters can be used in
the trigger bodies which have the form

trigger-condition ==> trigger-action

within expression ? trigger-condition ==> trigger-action
[: timeout-action]

The second form is used to specify a timed trigger. Once
activated, the timed trigger must fire within the specified
period (floating-point value specifying the time in seconds);
otherwise, the timeout action, if any, is fired.

Triggers are set by explicitly activating them after the object
has been created. A trigger Ti associated with an object
whose id is object-id is activated by the call

object-i&>Ti (arguments)

The trigger activation returns a trigger id (value of the
prede6ned class triggerid). The object id can be omitted
when activating a trigger in the body of a member function.
Note. that there can be more than one activation of a trigger in
effect.

An active trigger fires when its condition becomes true.
Firing means that the action associated with the trigger is
“scheduled” for action. Unlike [51], a trigger action is not
considered part of the transaction that causes the trigger to be
fired (triggering transaction). Each trigger firing results in the
creation of an independent transaction with the trigger action
being the transaction body. Conceptually, trigger conditions
are evaluated at the end of each transaction. Transactions
representing trigger actions are executed after (but not
necessarily immediately after) the triggering transaction, i.e.,
there is “weak coupling” [21] between the triggering
transaction and the bigger action. If the triggering transaction
is aborted, the trigger actions generated by it are aborted.

Triggers may be deactivated explicitly before they have fired
as follows:

--trigger-id

-object-id->Ti (argwnents)

The first form deactivates a trigger whose trigger id is
specified as the argument. The second form deactivates a
trigger that was activated with the specified arguments. If a
trigger is not active, then deactivating it has no effect. The
object id can be omitted when a trigger is referenced within
the body of a member function.

We provide one special macro, named changed, for use in
trigger conditions. This macro returns true if the value of its
argument (which must be a data component of the object
containing the trigger) has been changed in the current
transaction snd false otherwise.

Note that the perpetual triggers cannot be simulated with
once-only triggers by re-activating the trigger in the trigger
action. The problem with doing this is that the trigger action
is executed as a transaction at some later time. As a result,
the trigger will be inactive for the period between the firing of
the trigger and until the activation instruction in the trigger
action is executed.

42

As an example of a once-only trigger, consider the following
class inventory:

class inventitem: public stockitem {
public:

inventitem(Name iname,double iwt,int xqty,
int xconsumption, double xprice,
int xleadtime, Name sname, Addr saddr);

void deposit(int n);
int withdrawtint n);
. . .

trigger:
order0 : qty < reorderlevel ==>

place-ordertthis, eoq());
/*"this" refers to the object itself*/

):

Trigger order is activated in the constructor function
inventitem and in the member function deposit:

inventitem::inventitem(): (Name iname,
double iwt, int xqty,int xconsumption,
double xprice, int xleadtime,
Name sname, Addr saddr)

1
.

order(); /*trigger activation*/
)
void inventitem::deposit(int n)
1

qty += n;
order(): /*trigger activation*/

I

The action associated with the trigger order will be executed
after its condition becomes true (as result of executing the
withdraw operation whose body is not shown).

As an example illustrating a perpetual trigger, consider a
securities broker’s database. For each customer, a portfolio is
maintained. When the customer wants to buy or sell shares, a
buy or sell order is issued by sending an appropriate message
to the “market maker”. Amongst other objects, the market
maker’s database has an object for each stock which stores
such information as the stock price, and buy and sell orders
for that stock from various brokers. The stock price is
continuously updated based on the buy and sell orders. Here
is the specification of class stock:

class stock (
list-of-outstanding-orders:
void fillorderso:

public:
Name stockname:
double price;
stock(Name xname, double xprice);
void update(double xprice);
void sell(Name broker,int orderid,

int amount, double lowlimit);
void buy(Name broker, int orderid,

int amount, double highlimit);
. . .

trigger:
perpetual fill(): chanqedtprice) ==>

fillorderso;
):

Member function sell checks the current stock price, and if
it is above the lower limit specified for selling the stock, the
stock is sold immediately; otherwise, the sell order is added to
the list of outstanding orders. Similarly, member function
buy causes stock to be bought immediately if the current
stock price is below the upper limit specified for buying the

stock; otherwise. the buy order is added to the list of
outstandmg orders.

The stock price is updated by member function update. The
trigger condition changed (price) becomes true whenever
price changes, and the trigger action fillorder is
executed:

void stock::fillordersO
1

for each outstanding or&r a
if (price >= a.lowlimit) (

sellstock(this, a.amount, price):
message(a.broker, a.orderid, a.amount,

price, "sold") * ,
&lete outstanding order a ;

1
if (price <= a.highlimit) (

buystock(this, a.amount, price);
message(a.broker, a.orderid, a.amount,

price, "bought") ;
delete outstanding order a;

Timed triggers can be used to specify time limits within which
the order is to be executed:

class stock {
public:

Name stockname;
double price;

stock(Name xname, double xprice);
void update(double xprice);
. . .

trigger:
sellorder(Name broker,int orderid,

int amount,double lowlimit,double time) :
within time ? price > lowlimit ==> {

sellstock(this, amount, price);
message (broker, orderid, amount,

price, "sold") . I
l

buyorder(Name broker,int orderid,
int amount,double highlimit,double time):

within time ? price < highlimit ==> {
buystock(this, amount, price);
message (broker, orderid, amount,

price, "bought") ;

When the triggers sellorder and buyorder are activated,
the time limit (parameter time) within which the trigger must
fire is specified.

7. CONCLUSIONS
An important goal of research in programming languages
design is to provide a better fit between problems and
programming notation. We have tried to do this for databases
by using one unified data model for data definition and data
manipulation. We started with the object-oriented facilities of
C++ and extended them (minimally) with features to support
the needs of databases, putting to good use all the lessons
learned in implementing today’s database systems. The
resulting database programming language 0++ makes
available to database objects the full range of type-structures
and multiple inheritance found in C++ and, at the same time,
provides features such as persistence, iterators, fixpoint
querying capabilities, versions, constraints, and triggers.

43

This paper presented the linguistic facilities for specifying and
accessing data provided in O++. As mentioned, the rationale
for our design decisions is discussed in [3]. We have begun a
prototype implementation of O++, and we hope to report on
the implementation strategies and experiences in the near
future.

8. ACKNOWLEDGMENTS

The persistence model was influenced by discussions we had
with Steve Buroff and Mike Carey. David Dewitt’s
suggestions lead us to modify the paper that made our
presentation more complete. We are also grateful to J.
Annevelink, S. Buroff, H. T. Chou, A. R. Fetter, D. H.
Fishman, R. Greer. L. M. Haas, H. V. Jagadish, J. D. Jordan,
K. Kelleman, B. W. Kernighsn. D. E. Perry, A. Singhal, D.
Shasha, W. P. Weber, and A. L. Wolf for their comments and
suggestions.

REFERENCES

PI

VI

[31

141

151

WI

[71

PI

191

[lOI

ANSI C, Draft Proposed American National Standard
for Information Systems-Programming Language C. ,
1988.

R. Agrawal. “Alpha: An Extension of Relational
Algebra to Express a Class of Recursive Queries”,
Proc. IEEE 3rd Znt’l Conf Data Engineering, Los
Angeles, California, Feb. 1987. 580-590. Also in IEEE
Trans. Sofhvare Eng. 14. 7 (July 1988), 879-885.

R. Agrawal and N. H. Gehani, “Rationale for the
Design of Persistence and Query Processing Facilities in
the Database Programming Language O++“, 2nd Zti’l
Workshop on Database Programming Languages.
Oregon Coast, June 1989.

R. Agrawal and N. H. Gehani, “Version Managment in
ODE”, AT&T Bell Laboratories Technical
Memorandum. Murray Hill, New Jersey, 1989..

A. V. Aho and J. D. Ullman, “Universality of Data
Retrieval Languages”, Proc. 6th ACM Symp. Principles
of Programming Languages, San-Antoniao, Texas, Jan.
1979, 110-120.

A. Albano, L. Cardelli and R. Orsini. “Galileo: A
Strongly Typed Interactive Conceptual Language”,
ACM Tram Database Syst. 10, 2 (June 1985), 230-260.

T. Andrews and C. Harris, “Combining Language and
Database Advances in an Object-Oriented development
Environment”, Proc. OOPSLA ‘87, Orlando, Florida,
Oct. 1987.430440.

M. P. Atkinson and 0. P. Buneman, “Types and
Persistence in Database Programming Languages”,
ACM Computing Surveys 19, 2 (June 1987), 105-190.

T. M. Atwood, “An Object-Oriented DBMS for Design
Support Applications”. Proc. IEEE 1st Znt’l Co@
Computer-Aided Technologies, Montreal, Canada, Sept.
1985, 299-307.

F. Bancilhon and R. Ramakrishnan, “An Amateur’s
Introduction to Recursive Query Processing Strategies”,
Proc. ACM-SZGMOD 1986 Znt’l Co& on Management
of Data, Washington D.C., May 1986, 16-52.

r111

WI

r131

[I41

1151

WI

1171

WI

WI

WI

WI

WI

WI

1241

~51

F. Bancilhon, T. Briggs, S. Khoshafisn and P. Valduriez,
“FAD, a Powerful and Simple Database Language”,
Proc. 13th Znt’l Conf. Very Large Data Bases, Brighton,
England, Sept. 1987, 97-105.

J. Banerjee, H. T. Chou, I. F. Garza, W. Kim, D. Woelk
and N. Ballou, “Data Model Issues for Object-Oriented
Applications”, ACM Trans. Ojice Information Systems
5. 1 (Jan. 1987), 3-26.

D. Batory, J. Barnett, 5. Garza, K. Smith, K. Tsukuda,
B. Twitchell and T. Wise, “GENESIS: An Extensible
Database Management System”, IEEE Trans. Sofrware
Eng., Nov. 1988.

D. Beech and B. Mahbod, “Generalized Version
Control in an Object-Oriented Database”, Proc. IEEE
4th Znt’l Conf. Data Engineering, Los Angeles,
California, Feb. 1988, 14-22.

R. J. Bra&man and H. J. Levesque, (ed.), Readings in
Knowledge Representation, Morgan Kaufmann, 1985.

P. Buneman and M. Atkinson, “Inheritance and
Persistence in Database Programming Languages”,
Proc. ACM-SZGMOD 1986 Znt’l Co@. on Management
of Data. Washington D.C., May 1986.4-15.

L. Cardelli, “Amber”, Technical Memorandum, AT&T
Bell Laboratories, Murray Hill, New Jersey. 1984.

M. J. Carey. D. J. Dewitt, G. Graefe. D. M. Haight, J.
E. Richardson, D. H. Schuh, E. J. Shekita and S. L.
Vandenberg, “The EXODUS Extensible DBMS Project:
An Overview”, Computer Sciences Tech. Rep. #808,
Univ. Wisconsin, Madison, Nov. 1988.

D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P.
P. Griffiths, R. A. Lorie, J. W. Mehl, P. Reisner and B.
W. Wade, “SEQUEL 2: A Unified Approach To Data
Definition, Manipulation, and Control”, RJ 1798, IBM,
June 1976.

G. Copeland and D. Maier, “Making Smalltalk a
Database System”, Proceedings of the 1984 ACM
SZGMOD Intl. Co@. on Management of Data, Boston,
Massachusetts, June 1984. 316-325.

U. Dayal, B. Blaustein, A. Buchmann, U. Chskravarthy.
M. Hsu. R. Ledin, D. McCarthy, A. Rosenthal, S. Ssrin,
M. J. Carey, M. Livny and R. Jauhari, “The HiPAC
Project: Combining Active Databases and Timing
Constraints”, ACM-SZGMOD Record 17, 1 (March
1988). 51-70.

D. D. Detlefs, M. P. Herlihy and J. M. Wing,
“Inheritance of Synchronization and Recovery
Properties in Avalon/C++“, IEEE Computer 21, 12
(Dec. 1988), 57-69.

J. Diederich and J. Milton, “ODDESSY: An Object-
Oriented Database Design System”, Proc. IEEE 3rd
Znt’l Co@. Data Engineering, Los Angeles, California,
Feb. 1987, 235-244.

K. Dittrich and R. Lorie, “Version Support for
Engineering Database Systems”, Rep. RJ4769, IBM
Research Lab., San Jose. California, July 1985.

K. R. Dittrich. W. Gotthard and P. C. Lockemann,
“DAMOKLES - A Database System for Software
Engineering Environments”, LNCS 244, 1987.

44

WI

~71

1281

WI

[301

1311

1321

[331

[341

[351

I361

[371

I381

I391

[401

A. Ege and C. A. Ellis. “Design and Implementation of
GORDION. an Object Base Management System”.
Proc. IEEE 3rd Int’l Co& Data Engineering, Los
Angeles. California, Feb. 1987, 226-234.

D. H. Fishman, D. Beech, H. P. Gate, E. C. Chow, T.
Connors, J. W. Davis, N. Derrett. C. G. Hoch, W. Kent,
P. Lyngbaek, B. Mahbod, M. A. Neimat, T. A. Ryan
and M. C. Shari,, “Iris: An Object-Oriented Database
System”, ACM Trans. Office Information Systems 5, 1
(Jan. 1987), 48-69.

N. H. Gehani and W. D. Roome, “Concurrent C”,
Sofhuare-Practice & Experience 16, 9 (1986), 821-
844..

M. F. Homick and S. B. Zdonik, “A Shared
Segemented Memory System for an Object-Oriented
Database”, ACM Trans. Office Information Systems 5. 1
(Jan. 1987), 70-95.

S. E. Hudson and R. King, “Object-Oriented Database
Support for Software Environments”, Proc. ACM-
SIGMOD 1987 Int’l Co& on Management of Data, San
Fran&co. California, May 1987,491-503.

R. Katz, E. Chang and E. Bhateja, “Version Modeling
Concepts for Computer-Aided Design Databases”, Proc.
ACM-SIGMOD I986 Int’l Cog. on Management of
Data, Washington D.C.. May 1986.

S. N. Khoshaflan, G. P. Copeland and 406-416,
“Object Identity”, Proc. OOPSLA ‘86, Portland,
Oregon, Sept. 1986.

C. Lecluse, P. Richard and F. Velez, “0 , an Object-
Oriented Data Model”, Proc. ACM-SIGMdD 1988 Int’l
Cog. on Management of Data, Chicago, Illinois. June
1988.424-433.

D. Maier, J. Stein, A. Otis and A. Purdy, “Development
of an Object-Oriented DBMS”, Proc. OOPSLA ‘86.
Portland, Oregon, Sept. 1986,472486.

F. Manola and U. Dayal, “PDM: An Object-Oriented
Data Model”, Proc. Int’l Workshop Object-Oriented
Database System, Asilomar, California, Sept. 1986.

E. Neuhold and M. Stonebraker, “Future Directions in
DBMS Research”, Tech. Rep.-88-001, Int’l Computer
Science Inst., Berkeley, California, May 1988.

R. S. Nikhil. “Functional Databases, Functional
Languages”, in Data Types and Persistence, M.P.
Atkiion, P. Buneman and R. Morrison (ed.), Springer
Verlag, 1988, 51-67.

B. Nixon, L. Chung, D. Lauzon, A. Borgida, J.
Mylopoulis and M. Stanley. “Implementation of a
Compiler for a Semantic Data Model”, Proc. ACM-
SIGMOD 1987 Int’l Conf. on Management of Data, San
Fran&co. California, May 1987, 118-131.

P. O’Brien, P. Bulbs and C. Schaffert, “Persistent and
Shared Objects in Trellis/Owl”, Proc. Int’l Workshop
Object-Oriented Databare System, Asilomar, California,
Sept. 1986, 113-123.

H. B. Paul, H. I. Schek, M. H. Scholl, G. Weikum and
U. Deppisch, “Architecture and Implementation of the
Darmstadt Database Kernel System”, Proc. ACM-
SIGMOD 1987 Int’l Conf. on Management of Data, San

1411

[421

I431

WI

[451

[461

[471

I481

I491

[501

[511

1521

[531

[541

Fransisco, California, May 1987, 196-207.

Persistent Progr amming Research Group, “The PS-
Algol Reference Manual, 2d ed.“, Tech. Rep. PPR-12-
85, Computing Science Dept., Univ. Glasgow, Glasgow,
Scotland, 1985.

J. E. Richardson and M. J. Carey, “Persistence in the E
Language: Issues and Implementation”, Computer
Sciences Tech. Rep. #791, Univ. Wisconsin, Madison,
Sept. 1988.

J. E. Richardson, M. J. Carey and D. H. Schuh, “The
Design of the E Programming Language”, Computer
Sciences Tech. Rep. #824, Univ. Wisconsin, Madison,
Feb. 1989.

L. Rowe and K. Sheens. “Data Abstraction, Views and
Updates in RIGEL”. Proc. ACM-SIGMOD 1979 Int’l
Conf. on Management of Data, Boston, Massachusetts,
May-June 1979. 77-8 1.

L. A. Rowe and M. R. Stonebraker, “The POSTGRES
Data Model”, Proc. 13th In%‘1 Conf. Very Large Data
Bases, Brighton, England, Sept. 1987, 83-96.

H. 3. Schek and M. Scholl, “The Relation Model with
Relation-Valued Attributes”, Information Sys. II, 2
(1986), .

G. Schlageter, R. Unland, W. Wilkes, R. Zieschang, G.
Maul, M. Nag1 and R. Meyer, “OOPS - An Object
Oriented Programming System with Integrated Data
Management Facility”, Proc. IEEE 4th Int’l Co@. Data
Engineering, Los Angeles, California, Feb. 1988, 118-
125.

J. W. Schmidt, “Some High Level Language Constructs
for Data of Type Relation”, ACM Trans. Database Syst.
2, 3 (Sept. 1977), 247-261.

P. M. Schwarz. W. Chang, J. C. Freytag, G. M.
I&man, J. McPherson, C. Mohan and H. Pirahesh,
“Extensibility in the Starburst Database System”, Proc.
Int’l Workshop Object-Oriented Database System,
Asilomar, California, Sept. 1986.

J. M. Smith, S. Fox and T. Landers, ADAPLEX:
Rationale and Reference Manual, 2nd ed., Computer
Corp. America, Cambridge, Mass., 1983.

M. Stonebraker. E. N. Hanson and S. Potamianos, “The
POSTGRES Rule Manager”, IEEE Trans. Software
Eng. 14. 7 (July 1988), 897907.

B. Stroustrup, The C++ Programming Language,
Addison-Wesley., 1986.

W. Tichy, “RCS: A System for Version Control”,
Software Practice and Experience IS, 7 (July 1986).
637-654.

A. Wasserman, “The Data Management Facilities of
PLAIN”, Proc. ACM-SIGMOD 1979 Int’l Conf. on
Management of Data, Boston, Massachusetts, May-June
1979.

45

