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ABSTRACT

We present techniques for privacy-preserving computaifonul-
tidimensional aggregates on data partitioned acrosspirittiients.
Data from different clients is perturbed (randomized) idesrto
preserve privacy before it is integrated at the server. Weldp
formal notions of privacy obtained from data perturbatiod ahow
that our perturbation provides guarantees against priveeaches.We
develop and analyze algorithms for reconstructing couhsub-
cubes over perturbed data. We also evaluate the tradeeiebat
privacy guarantees and reconstruction accuracy and sheprac-
ticality of our approach.

1. INTRODUCTION

On-line analytical processing (OLAP) is a key technology em
ployed in business-intelligence systems. The computatiomulti-
dimensional aggregates is the essence of on-line andlptimeess-
ing. We present techniques for computing multidimensi@oaint
aggregates in a privacy-preserving way.

We consider a setting in which clien,, C,,...C, are con-
nected to a serve®. The server has a tablB(Ay, Ay, ..., An),
where each columA; comes from a numeric domain. Each client
Ci contributes a row;(a,, &, . .., &,) to T. The server runs aggre-
gate queries of the form

select count(*) fromT
where Pj, and Pj, ... and Pj,.

HerePj, is a range predicate of the fora) < A;, < a5, denoted
asAjla;,ay]. We use coun®j, A Pj,... A P,) to succinctly
represent the above aggregate query.

We take the randomization approach to preserving privabg. T
basic idea is that every clie@; perturbs its rowr; before sending
it to the serverS. The randomness used in perturbing the values
ensures information-theoretic row-level privacy. Figlirgives the
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Figure 1: Privacy preserving computation of multidimensional coagt
gregates.

schematic of our approachS runs queries on the resultant per-
turbed tableT’. The query meant for the original tableis trans-
lated into a set of queries on the perturbed tableThe answers to
these queries are then reconstructed to obtain the reshk trigi-
nal query with bounded error. We show that our techniquesafes
against privacy breaches.

The perturbation algorithm is publicly known; the actuah-ra
dom numbers used in the perturbation, however, are hidden. T
allow clients to operate independently, we use local pestions
so that the perturbed value of a data element depends onlg on i
initial value and not on those of the other data elementdekifit
columns of a row are perturbed independently. Weretmntion re-
placemenschemes where an element is decided to be retained with
probability p or replaced with an element selected from a probabil-
ity distribution function (p.d.f.) on the domain of elemsnt

The proposed techniques can also be used for database tables
in which some of the columns are categorical. They are also ap
plicable in the settings in which the database tables atéipaed
horizontally or vertically.

The organization of the rest of the paper is as follows. W sta
off with a discussion of related work in Section 2. SectioroB f
mally defines the retention replacement perturbation. i@eet
presents the reconstruction algorithms. Section 5 preseaguar-
antees against privacy breaches offered by our techniduéec-



tion 6, we discuss how our techniques can be extended toarateg
ical data. We also discuss some additional perturbatidmiqaes

tion [13, 25], that allows any function, whose inputs are shared
between multiple clients to be evaluated, such that notbthgr

and describe how our techniques can be used in data mining bythan the result is revealed. Since the general protocolsxqen-

showing how to build a decision tree classifier. Section Bemés
an empirical evaluation of our techniques. We conclude \ith
summary and directions for future work in Section 8. The fBoo
of our results have been collected in the Appendix.

2. RELATED WORK

The techniques for preserving privacy while answeringsttaal
queries developed in the statistical database literaamde classi-
fied intoquery restrictioninput perturbationandoutput perturba-
tion [1]. Both query restriction and output perturbation arelap
ble when the entire original unperturbed data is availabla $in-
gle central repository, which is not true in our setting, vehdients
randomize their data before providing it to the server. @enario
fits in the framework of input perturbation, where the goabisre-
ate a version of the database that can be publicly releagpctén-
sus data), yet the individual rows should not be recoverdlieal
perturbation for a single column has been studied in [24]vél@r
most previous work (e.g., [20]) assume that during pertishahe
entire database is available at a single site, while we redacal
perturbations at each client.

The use of local perturbation techniques to preserve privaic
individual rows while allowing the computation of data nmigi
models at the aggregate level was proposed in [4].
an additive perturbation technique, in which a random peau
tion is added to the original value of the row, where the pbau
tion is picked from another probability distribution furt (e.g.
Gaussian). They showed that it was possible to build aceutet
cision tree classification models on the perturbed data.

However, it is difficult to provide guarantees against priva
breaches when using additive perturbation. For instafiees add

sive, efficient protocols have been proposed for specifialdete
and data mining operations, e.g. [3, 8, 12, 16, 19]. Howdkhese
protocols are designed for a small number of clients.

3. DATA PERTURBATION

A single record of the table is referred to asaav, while an
attribute is referred to as@lumn A single column from a single
row is the granularity of perturbation and is referred to atata
element

DEFINITION 1. Perturbation Algorithm: A perturbation al-
gorithma is a randomized algorithm that given a table T creates a
table T having the same number of rows and columns.

We will denote the unperturbed table Bsand the perturbed table
asT’. The perturbation algorithm is public. However, the actual
random numbers used by it are hidden.

Let tj andt; denote the value of the element in tiferow of
the j™ column in tablesT and T’ respectively. The perturbation
algorithm is said to béocal if ti/j depends only ort;, while it is
said to beglobal if ti’j depends on other elements in tffecolumn
of T.

Let D; denote the domain of elements in tft column of T.

They used D;j is said to be continuous for numeric columns, and discrete fo

categorical columns. For the class of perturbation algorit we
study, for every column being perturbed, we require theupea:
tion algorithm to select a fixed probability density functifp.d.f.)
on the column’s domain. For thé' column we call this p.d.f. the
replacing p.d.f.on D;. Both D; as well as the replacing p.d.f. on
Dj are public.

DEFINITION 2. Retention Replacement Perturbation: Re-

a Gaussian random variable with a mean 0 and variance 20 fo agetention replacemenperturbation is a perturbation algorithm,

and for a specific row the randomized value happens tedfie one
can estimate with high confidence that the original valugyefwas
(say) less than 20. Additive schemes are also restrictedrteeric
data. Finally, the algorithms in [4] reconstruct each caiumde-
pendently. Since OLAP requires queries over multiple caisinit
is essential to be able to reconstruct them together.

The problem of privacy-preserving association-rule ngnivas
studied in [9, 10, 21]. The randomization schemes used igethe
works are similar to the retention replacement schemes we co
sider. However these studies are restricted to boolean data

Formal definitions of privacy breaches were proposed ind8d
an alternate approach to defining privacy guarantees waoged
in [6]. We adapt the definitions from [9] to allow more accerat-
construction while still providing strong privacy guaraes. As our
notion of privacy encompasses multiple correlated coluower
vertically partitioned tables, it extends to privacy biees (called
disclosure risk) considering row linkage, studied in statal dis-
closure control methods and [11].

There has been recent work [22, 23] to specify authorizatih
control inferences for OLAP data cubes. However the model as
sumes that the data resides at a single server, unlike ohlepno
where private data is integrated from multiple clients.

Another related area is that afecure multiparty computa-

where each element in column jis retained with probabilityamd
with probability (1 - p;) replaced with an element selected from the
replacing p.d.f. on . That is,

t; :{

If column j of the table can be revealed without perturbation we
setp; = 1.

Retention replacement perturbation, where the replacihd, s
the uniform p.d.f. is callediniform perturbation We assume that
each column of the tablE" has been perturbed independently using
uniform perturbation. In Section 6.2, we show that uniforentpr-
bation provides better privacy guarantees for rare evether
alternatives and comparisons are also given in the samersect

tj with probability g
element from replacing p.d.f. on;Wvith probability (1-p).

4. RECONSTRUCTION

An aggregate function on the original table must be recon-
structed by accessing the perturbed table The accuracy of the
reconstruction algorithm is formalized below by the notafrap-
proximate probabilistic reconstructability.

DEerFINITION 3. Reconstructible Function: Given aperturba-
tion a converting table T to T a numeric function f on T is said



to be(n, €, 6) reconstructible by a function’fif f' can be evalu-
ated on the perturbed table’ Bo that|f" — f| < maxe, ef) with
probability greater tha{1-6) whenever the table T has more than
n rows. The probability is over the random choices made by

For boolean functionsn(s) reconstructability needsand f’ to
agree exactly with probability greater than<5).

Referring to Figure 1, to answer the aggregate qaenn{P; A
P, A. .. Py) onk columns of the original tabld;, a set of & queries,
coun{Py APy A ... Py, coun{=Py AP, A ... Py), coun{Pi A =P A
... Py, coun(=P1 A=PoA... Py ...coun{=P A=P,A...=Py) are
generated. These queries are evaluated on the perturdedtab
The answers ofi” are reconstructed into estimated answers for the
same queries of, which include the answer to the original query.

Without loss of generality, assume that the predicates ale o
over perturbed columns. We present reconstruction atgostfor
numeric columns. These algorithms can be extended to aatabo
columns too as shown in Section 6.

4.1 Reconstructing Single Column Aggre-
gates

Consider the uniform retention replacement perturbatiitn re-
tention probabilityp applied on a database withrows and a sin-
gle column,C, with domain fnin, maX. Consider the predicate
P = C[low, high]. Given the perturbed tabl€’, we show how to
estimate an answer to the quegun{P) onT.

Let tablesT, T' each haver rows. Letn, = coun(P) evaluated
on tableT’, while n, = coun{P) estimated for tabld. Givenn,
we estimaten, as

high— low

1
Ny = B(nr -n(l-p)b) , where b= A= Tin

The intuition is that out of the rows in tableT, the expected num-
ber of rows that get perturbedngl — p). For uniform perturbation,
ab fraction of these rows, i.ea(1 — p)b rows, will be expected to
lie within the [low, high] range. The total number of rows observed
in range [ow, high] in T', n;, can be seen as the sum of those rows
that were decided to be perturbed intow, high] (from outside,
or perturbed and retained within the interval) and thosesrtvat
were unperturbed in the original interval. Subtractingrfie— p)b
perturbed rows fromm,, we get an estimate for the number of un-
perturbed rows, with values ihdw, high] in T. This is scaled up
by 1/p to get the total number of original rows inin [low, high],
as only ap fraction of rows were retained.

The fractionf of rows originally in Jow, high] is therefore esti-
mated as

P ¢
f=22

_ne (- p)(high—low)
n_ pn  p(max—min

Not only is the above estimator a Maximum Likelihood Estima-
tor (MLE) as shown in Section 4.2, it reconstructs an appnake
answer with high probability.

THEOREM 1. Let the fraction of rows ifilow, high] in the orig-
inal table f be estimated by fthen f is a(n, ¢, §) estimator for f
if n > 41og(2)(pe)~2.

We now formalize the above reconstruction procedure. Tdris f
malization provides the basis for the reconstruction of tipla
columns in Section 4.2.

Let vectory = [Yo,Y1] = [coun(=P), coun{P)] be the answers
on tableT’, and let vectorx = [Xo, %] = [coun(=P), coun(P)]
denote the estimates for table Let b be defined as before and
a=1-b. As only tableT’ is available,x is estimated using the
constraintxA = y, which gives the estimator = yA™l. HereA is
the following transition matrix

(1-pb
(1-pb+p |

(1-pa+p
(1-pa

The element in the first row and first columnfag, = (1-p)a+p
is the probability that an element originally satisfying in T after
perturbation satisfiesP in T'. This probability was calculated as
the sum of the probabilities of two disjoint events. The firsing
that the element is retained, which occurs with probabitityl he
second being that the element is perturbed and after pationb
satisfies~P, which together has probability @ p)a. The element
ap; is the probability that an element satisfyind in T after per-
turbation satisfie® in T'. The elemenay, is the probability that
an element satisfyin@ in T after perturbation satisfiesP in T'.
The elementy; is the probability that an element satisfyifgin
T after perturbation satisfie® in T'. Their values were similarly
derived.

If y = [n—n;,n;]andx = [n—n,, Ny], the solution to the equation
below gives the same estimator as derived earlier:

(1-ppb
(1-pb+p

(1-pa+p
(1-pa

[n—n0 no] :[n—nr nr].

4.2 Reconstructing Multiple Column Aggre-
gates

Assume now that the uniform retention replacement perturba
tion, with retention probabilityp, has been applied to each lof
columns of a tableT. Consider the aggregate quargun{P; A
P, A ...P) on tableT. In practicek is small.

We create & x 2 matrix, R, with k rows and 2 columns, having 1
row for each query columrR;; gives the probability that a number
randomly selected from the replacing p.d.f. for columill sat-
isfy predicateP;, while R o is the probability of the complementary
event, that a number selected from the replacing p.d.f. satiilsfy
-P,.

Take for instance the query, Q=count(age[30-A5jalary[50k-
120k] A house-rent[700-1400]) with the domains for age, salary
and house-rent being [0-100], [25k-200Kk], [500-2500]. i Rawill
be [[0.85,0.15], [0.6, 0.4], [0.65, 0.35]], since the first column being
age[30-45] impliesR; ; = (45— 30)/(100- 0) = 0.15, whileR; =
1-0.15=0.85, etc.

As stated earlier, to answer the quegun{P; A P,...Py), we
ask X aggregate queries on the perturbed table The X answers
on perturbed tabl&’ are converted into estimated answers to these
2¢ aggregate queries on the original table T, which includes th
estimated answer to the original query.

Lety be a row vector of size“ahat has the answers to the above
queries on perturbed tablE, and letx be a row vector of size
2 that has the reconstructed estimated answers to the queries
original tableT. We order the answers to thé& Queries in vectors
X, y using the bit representation of the vector index as shown in
Figure 2. LetQ(r, 1) denote the predicate() on ther™ column of
query Q, andQ(r, 0) its negation 4P,). Let bit(i, r) denote the"



Query Estimated ofT | Evaluated orm’
coun(—P; A =P,) Xo Yo
COUn(—'P]_ A Pz) X1 Y1
coun(P; A —=P5) X2 Yo
coun(P; A Py) X3 V3

Figure 2: Answering query coun{P; A P,)

bit from the left in the binary representation of the numbasing
k bits. Then,

X = coun(Ak_, Q(r, bit(i,r))) in T,for0<i < 2—1;

yi = coun{AK_, Q(r, bit(i,r))) in T', for 0 < i < 2¢— 1.

For example, for the queigount{age[30-45]A salary[50k-120Kk]
A house-rent[700-1400]y[610] = Y[110,] = coun{age[30-45]A
salary[50k-120k]An — house-rent[706- 1400])

By a single scan through the perturbed tablevectory can be
calculated. Vectoxk is reconstructed from vectgrusing the matrix
inversion technique or the iterative Bayesian techniquecideed
below. The data analyst may either be interested only in ¢ine-c
ponentxx_j, which is the answer to theoun{Ak_, P;) query onT,
or she may be interested in the entire vector

4.2.1 Matrix Inversion technique

If p, is the retention probability for the" column, we calculate
vector x from vectory asx = yA~L. The transition matrixA, with
2¢ rows and 2 columns, can be calculated as the tensor product
[15] of matrices

A=AIQA QA;. QA

where the matrixA;, for 1 < r < kis the transition matrix for
columnr (see Section 4.1).

| @-pla+p (A-p)br
| @Q-pla @-p)b+p
whereb, = R;anda, =Ro=1-R.
The entries of the tensor product matri&, can be explicitly
calculated to be
ajj [T = p) X Ry + Pr X Sitcirybittir))s
Yo<i<2X0<j<2¥
wheredq) = 1if c=d, and 0 ifc # d, forc,d € {0, 1}.

A

We split the space of possible evaluations of a row ifitstates,
according to which of the"2mutually exclusive predicate combi-
nations the row satisfies. We say a row is said to belong te stat
i if it satisfies the predicateX_, Qr, bit(i,r)). For example, from
Figure 2, arow in state 0 satisfie®; A =P, while a row in state 1
satisfies-P; A P; etc.

The entrya; of matrix A above represents the probability that a
row belonging to statein T, after perturbation belongs to state
in T'. As each column was independently perturbed the probability
of transition from statéto statej is the product of the probabilities
for the transitions on all columns. The contribution frone tf
column to the transition probability is the sum of(f;) X R pit(j s
if the element was decided to be perturbed, anet 5pit.r) bit(jr)
if the element was decided to be retained. The t&gi i) pitir)
ensures that the retention probabilftyadds up only if the source
and destination predicates on thecolumn are the same for states

i andj. Thus the probability of transition from staitéo statej on

thert™™ column is (1— p,)XRr’bit(j,r) +pr X5(bit(i,r),bit(j,r))- The pl’OdUCt of
this probability over all columns gives the probability cdnsition
from statei to statej, &;.

THEOREM 2. The vector x calculated as™2y is the maximum
likelihood estimator (MLE) of the relaxed a priori distrition (
>i% = nand0 < x < n are the exact constraints, the relaxed
constraint only ensure¥,; X, = n) on the states that generated the
perturbed table.

The multiple column aggregate is, €, 6) reconstructible, is shown
by applying the Chernoff bound, to bound the erroyjrand then
bounding the error added during inversion.

4.2.2 lterative Bayesian technique

Let vectorsx andy of size ¥ be the a priori distribution on states
of the original rows, and posteriori distribution on statésper-
turbed rows, as introduced above. Let the original statesw$
in T selected from the a priori distribution be given by random
variablesUy, Uy, ....U,, while the states of the perturbed rows
in T" be given by the random variablag, V,,...V,. Then for
0<pg<t=(2-1)and 1<i < n, we havePr(V; = g) = yg/n,
andPr(U; = p) = xp/n. Also Pr(V; = qU; = p) = ayq is the
transition probability from statp to g.

From Bayes rule, we get

P(Vi = qU; = p)P(U; = p)
P(Vi =q)
P(Vi = qU; = p)P(U; = p)
Sr-o P(Vi = qUi = 1)P(U; =)

Xp
8pqy

Pr(U; = plVi = 0)

t X
Zr:O arq Fr

8pgXp
-
203X

We iteratively updatex using the equation
t
Pr(Ui = p) = ) Pr(Vi = 9)Pr(U; = pIV; = 0).
g=0

This gives us the update rule,

t
X;+1 _ qu
q=0

where vectorx” denotes the iterate at std@p and vectorx'*! the
iterate at steff + 1.

We initialize the vecton® =y, and iterate until two consecutive
X iterates do not differ much. This fixed point is the estimated
priori distribution. This algorithm is similar to the iteize proce-
dure proposed in [4] for additive perturbation and shown2itd
be theExpectation Maximizatio(EM) algorithm converging to the
Maximum Likelihood EstimatdMLE).

4.2.3 Error in Reconstruction

We provide here a brief analysis of the error in the recoustru
tion procedures. A quantitative analysis of the magnitudsror is
easy for the inversion method, but such an analysis is muateha
for the iterative method. Due to the randomization in thetyrer
bation algorithm there are errors in the transition prolités in



matrix A. This causey, the posteriori distribution after perturba-
tion calculated fronTT’, to have errors. Hence the reconstructed
will have errors.

The error decreases as the number of rowsncreases. Let
a{j denote the actual fraction of original rows of statiat were
converted to stat¢. Then asn increasesg;; will be a closer ap-
proximation toa{j. The error decreases as*® as indicated by
Theorem 1, and verified empirically in Section 7.

The error in reconstruction increases as the number of recon
structed columnsk, increases, and the probability of retentiqm,
decreases. The largest and smallest eigenvaludsaf be shown
to be 1 ando* respectively and the condition number of the matrix
A grows roughly ap™ (see Section 7). The condition number of
a matrix is a good indicator of the error introduced duringein
sion [14].

5. GUARANTEES AGAINST PRIVACY
BREACHES

Private data from multiple clients is perturbed before baim
tegrated at the server. In this section, we formalize theapyi
obtained by this perturbation.

The notion of a1, p,) privacy breach was introduced in [9]. We
extend this to introduce a new privacy metric, called the{, p2)
privacy breach.
viduals. Itis quite likely that many people buy bread, butmany
buy the same prescription medicine. The new metric is mone co
cerned about whether an adversary can infer from the rarmami
row which medicine a person bought, and is less concernegt abo
the adversary determining with high probability that théegiorl
row had bread, as most individuals buy bread and it does set di
tinguish the individual from the rest of the crowd.

Assume that the adversary has access to the entire pertiarbed
ble T" at the server, and the exact a priori distribution on the un-
perturbed data (which can be reconstructed'[#))so assume that
any external information is already incorporated into theabase.

5.1 Review 0f(p,.p,) Privacy Breach

Consider a data element of domaip perturbed by a perturba-
tion algorithm into another domalv,.

DEFINITION 4. (o1,p02) Privacy Breach[9]: Let Y denote the
random variable corresponding to the perturbed value andhaf t
corresponding to the original value obtained from the a grabis-
tribution. We say that there is @1, 02) privacy breach with re-
spect to QC Vy if for some SC Vy P[X € Q] < p; and
P[Xe QY€ S] = p,whereO< p; <pr<land HY € S] > 0.

Intuitively suppose the probability of an event, (agd0) (say),
according to the a priori probability is p; = 0.1 (say). After
observing the perturbed value, if the posteriori probabitif the
same event increasesxtq, = 0.95 (say), then there is a (0.1,0.95)
privacy breach with respect to the event (ag&0).

5.2  (sp1.p2) Privacy Breach

1From Section 4.1, the error in the reconstructed a priotritis-
tion for very selective predicates is large. This adds topttivacy
of the perturbed rows.

Consider a database of purchases made iby ind

In retention replacement perturbations, which are of adeto
us, the column is perturbed back into the same domain, angkhen
Vx = Vy. LetS C Vx, with P[X € S] = ps, for X €, Vx wheree,
represents selecting an element fréfpaccording to the a priori
distribution onVy. Let P[Y € S] = mg, for Y €, Vx, wheree, rep-
resents selecting an element frdfpaccording to the replacing dis-
tribution, which is different from the distribution of theegurbed
table. The ratigps/ms is called therelative a priori probabilityof
the setS.

The relative a priori probability is a dimensionless qugnthat
represents how frequent a set is according to its a priokigiiity
as compared to the replacing p.d.f. (the uniform p.d.f.)a bhata-
base of purchases, medicines will have low relative a ppoob-
ability since different people take different medicinesile bread
will have high relative a priori probability.

DEFINITION 5. (s p1,p2) Privacy Breach: Let Y denote the
random variable corresponding to the perturbed value andha¢ t
corresponding to the original value obtained from the a grais-
tribution.

Let S € Vx, we say that there is s, p1, p2) privacy breach with
respect to S if the relative a priori probability of S ¢/ms < s,
and if X € S] = ps < p; and HX € S|Y € S] > p, where
O<pi<pa<land HY € S]> 0.

The value ofs in the privacy breach is addressed by the next
result.

THEOREM 3. The median value of relative a priori probability,
over all subsets S, 8 Vy, is 1.

We define rare sets as those that have relative a priori pitdpab
smaller than 1. We next show that privacy breaches do notdmapp
for rare sets.

5.3 Single Column Perturbation

THEOREM 4. Let p be the probability of retention, then uni-
form perturbation applied to a single column is secure agam
(s p1,p2) breach, if

< (02— p1)(1 - p)
1-p2)p

As a concrete example, for uniform perturbation, with p50.2
there are no (68, 0.1, 0.95) breaches. This means for ar§y, set
p2 > 0.95 with uniform perturbationg; will be large & 0.1) when
ps/ms < 68. In fact, for a rare set, wite < 1, there will be no
(0.937,0.95) privacy breaches in the origingl(,02) model for this
perturbation.

5.4 Multiple
Columns

Let D; be the domain for columnin ak column table. Then the
domain of the table) = D;xD,x. .. Dy. Each column of the table
is perturbed independently by a retention replacementifisation
scheme.

There is an a priori probability distribution of the rows ia-t
bleT. LetS; C D; be a subset of the domain of tfié column
forl <i <k LetS =S;xS,x...5, thenS ¢ D. Let

S

Independently  Perturbed



P[S] = Ps,xs,x..sc = Ps (say) be the a priori probability &. Let
PLY: € Si] = mg, for Y; €, Di, wheree,, denotes selecting ran-
domly from the replacing p.d.f. ob;, forall1 < i < k. Then
PLY € S] = mg,ms,..Mms, = ms (say) forY = (Y1, Y2,...Yy) €, D,
wheree, denotes selecting randomly from the replacing p.d.f. for
each column independentlys/ms, the relative a priori probabil-
ity, is the ratio of the a priori probability to the replacipgobabil-

ity, of the combination of values for the columns togetheorré-
lated columns with higher a priori probabilities have largalues

of ps/m..

THEOREM 5. There will not be &1, p,) privacy breach with
respect taS; x Sy x...S¢) =S C D, if

Bs p2(1 - p1)(1 - p) _
(1-p2) TTA((L - P)Ms, + )

ms
Si denotes the subset on coluinmithin which the original value
must be identified for the privacy breach. In the ca&&egdenotes
a single value or a small range within the domain of a contisuo
column, hence (+ pms, < p. We approximate (+ p)ms, + p by
p to get

p2(1- p1)(1 - p)* S p2(1-p1)(1 - p)*
A-p)Ta(@-pmg +p) ~ (1—p2)p*
for some small constat Thus for some small constantuniform
perturbation applied individually t& columns is secure against
(s, p1, 02) breaches for
p2(1- p1)(1- p)*
ST @ 79

As an example, for uniform perturbation with p=0.2 applied i
dependently to two columns, there are no (273,0.1,0.9%)ches
for joint events on the columns (whem;, are small).

(1-9

6. EXTENSIONS

6.1 Categorical Data

Consider a categorical colum@, having discrete domaiD. Let
S ¢ D. A predicateP, on columnC, usingS is defined as

P(x) = {

Given the a priori and replacing p.d.f. @ the reconstruction
algorithms in Section 4 and the privacy guarantees in Se@&io
can be directly applied to the categorical data by compultiireg
probability of the predicate?, being true.

6.2 Alternative
Schemes

Our analysis so far considered retention replacement mpertu
bations where the replacing p.d.f is the uniform distribnti
We now discuss some other interesting retention replacemen
schemes:

1 Identity perturbation: If the original data element is decided

true ifxeS
false otherwise

Retention  Replacement

2 Swapping: Swapping is closely related to identity perturba-
tion. In swapping with probabilityp we retain a data element,
and with probability (1- p) we decide to replace it. Numbers
decided to be replaced are then randomly permuted amongst
themselves.

Identity perturbation and swapping are different from anif
perturbation which is a local perturbation. Identity peoation
can be local if there is knowledge of the a priori distribuatioe-
fore perturbation. Swapping is not a local perturbation r@aglires
multiple rows at the client.

6.2.1 Reconstructing Aggregates

Identity perturbation and swapping do not affect the answer
single column aggregate queries, i.e. answers to singlemcohg-
gregate queries on the perturbed tafle,are returned directly as
answers to those queries on the original table,

The difference in multi-column reconstruction for ideytjier-
turbation and swapping as compared to uniform perturbasiam
the evaluation of vectoR in Section 4.2. Recall tha® ; is the
probability that an element selected from the replacingfp.on
columni satisfies the predicate on tif& column, P;. The replac-
ing p.d.f. (which is the original p.d.f. for identity perhation and
swapping) is required for reconstruction. This requiressérver to
have the original p.d.f. for each column. This requiremeritaw-
ever obviated by the observation in the previous paragtaphthe
fraction of elements satisfying; in T is the same as the fraction of
elements satisfying; in T'. HenceR ; can be calculated from’ .
Rio as before is calculated as-1R, ;.

The reconstruction error after identity perturbation anegping
will be smaller than that compared to uniform perturbationsets,
S, with small relative a priori probability. This is becauseuni-
form perturbation the noise due to the perturbed data elentleat
now belong taS, but did not before perturbation, exceeds signif-
icantly the number of data elements that wer&ioriginally and
retained during perturbation.

6.2.2 Guarantees against Privacy Breaches

The guarantees for identity perturbation and swapping @n b
obtained usingns, = ps, in Theorems 4 and 5. As an example we
restate Theorem 4 for identity perturbation.

LEmMMA 1. Forasingle column, identity perturbation is secure
against(s, p1, p2) privacy breaches for
p2—P
1-p°

pP1 <

PROOF For identity perturbationng = ps, henceps/ms =1 VS.
Repeating the argument in Theorem 4 we get<{ p1)(1 — p) >
(1 - p2)p, which implies the result. [

The above 4:,p2) guarantee for identity perturbation is inde-
pendent of the subs&. Uniform perturbation gives bettep, o2)
guarantees for a set of rare data elements, i.e. a sepy/fith, < 1
and worse for sets withs/ms > 1. Identity perturbation and swap-
ping have a privacy breach in the presence of external krimele

to be perturbed, the data element is replaced by a random ele-about rare values (eg. the largest or smallest value). Rdvey

ment selected uniformly among all data elements [18] (he. t
replacing p.d.f. is the same as the a priori distribution).

need to be suppressed (i.e. blanked out) [17] for privack thiese
perturbations.



age <30

salary<10 ~iLov

age <21 +:High

+: High —:Low

Figure 3: Decision Tree Example

6.3 Application to Classification

Zipfian distribution with zipf parameter 0.5. We create theeich
tables with different number of rows. The number of rows ise

in factors of 10 from 1®to 1. The frequencies of occurrences
are such that the least frequent element occurs 5 timesrdsits

in the number of distinct values to be approximately onehtarfit
the number of rows in the table.

7.1 Randomization and Reconstruction

In this Section we assume that the vectery, described in Sec-
tion 4.2 have been normalized, i.e. all elements have begtedi

by n, the number of rows, so that the sum of the elements of each

vector is 1. These vectors will also be referred to as prdibabden-
sity function (p.d.f.) vectorsx is the reconstructed p.d.f. vector,
obtained by the inversion or iterative method in Section wizile
y is the p.d.f. vector on the perturbed table before recoattm

We show how aggregate queries on multiple columns can be usedLet the exact original value of the p.d.f. vector calculatéectly

for privacy preserving construction of decision trees [4]Con-
sider the tree in Figure 3 built on randomized tabiavith schema
(age, salary, house-rent, class-variable) to predictdhenn class-
variable. The column class-variable can take two valseand -

representing high and low credit-risk (say). The privatkicms
among age, salary, house-rent and class-variable, areirdeh
pendently perturbed by a retention replacement pertunbatiet
Q denote the predicate (class-variable = ‘+') whil® denote the
predicate (class-variable="-").

For the first split, say on (age 30), the gini index is calcu-
lated using the estimated answers of the four queries: (ayef0-
30] A = Q), countE: age[0,30]A = Q), count(age[0-30] Q )
and countt age[0,30N Q ) on T. Now consider the left sub-
tree of elements having (age 30) using the predicate (salary

< 10k). We do not partition the randomized rows at any level

in the decision tree. Previously with additive perturbati@andom-
ized rows were partitioned, and the columns were recortstiuc
independently [4]. With multi-column reconstruction theegies
count(age[0-30]A salary[25k-100k]A = Q), count(age[0,30A
salary[100k-200k]a = Q ), count(age[0-30]\ salary[25k-100K]
A Q) and count(age[0,30} salary[100k-200k]A Q ) are recon-
structed forT, to calculate the gini index or another split criterion
at this level.

Now consider the third split, on age once again, but this {zge
< 21), is decided after the queries count(age[0-2alary[25k-
100k] A = Q ), count(age[21-30n salary[25k-100k]A = Q)
count(age[0-21]A salary[25k-100k]A Q ) and count(age[21-30]
A salary[25k-100k]A Q ) are reconstructed foF. The number

of columns in the count query did not increase at this split on

age, which was already present among the original set ofeguer
columns.

7. EXPERIMENTS

We next present an empirical evaluation of our algorithmseah
as well as synthetic data. For real data, we used the Ad@sdat
from the UCI Machine Learning Repository [5], which has eens
information. The Adult dataset contains about 32,000 rowh w
4 numerical columns. The columns and their ranges are: age[1l
90], fnlwgt[10000 - 1500000], hrsweek[1 - 100] and edunum[1
16].

For synthetic data, we used uncorrelated columns of datadgav

on the unperturbed tabld, bex. Thel, norm of the difference
between the estimatea)(and actual X) p.d.f. vectors is used as
the metric of error, and is referred to as tleeonstruction error
The results of the reconstruction algorithm are quite atewvhen
the reconstruction error is much smaller than 1.

Reconstruction Error

randomized —+—
reconstructed (iterative) ---x---
08 reconstructed (inversion) ---*---
]
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¥
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Figure 4: Reconstruction errors for conjunction of 2 predicates fauk
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Figure 5: Reconstruction errors for conjunction of 3 predicates faiuk
data.

Reconstruction algorithms: We first study the reconstruction er-
ror while reconstructing multiple columns of the Adult dsgt
for varying retention probabilities. The predicates befegon-
structed are age[25-45], fnlwgt[100000-1000000] and kedfB0-



60]. Figure 4 shows the errors on first two among the above pred lier.

icates while Figure 5 shows the errors on all three predicaléhe
retention probability,p, plotted on thex-axis, is the same for all
columns. The reconstruction error is plotted on ytexis. There
are three curves in each figure. The curaedomized shows the

I; norm of the difference between the perturbed p.d.f. vegtord
the original p.d.f. vectox . It serves as a baseline to study the re-
duction in error after reconstruction wto x. The other two curves
represent the reconstruction errors afteritbemtiveand theinver-
sionalgorithms.

The iterative procedure gives smaller errors than the &iwer
procedure, especially when a larger number of columns amre
structed together, and the probability of retentipnis small. This
is reconfirmed later by Figures 7 and 8, and similar experimen
synthetic data (which we do not show for the lack of space)s Th
may seem unintuitive as the inversion algorithm was shovgivie
the MLE estimator foi, satisfying);; x; = 1 (after normalization).
This can be explained by noting that the iterative algoritjives
the MLE estimator in the constrained space, i.e. for the Fates
of 3, x = 1 that satisfies & x < 1 Vi. Since the number of
rows are always non-negative, this is the subspace thaiosrhe
exact original p.d.f. vectox'. When the retention probability de-
creases, and the number of columns to be reconstructecdsese
the error during randomization and reconstruction in@saand
the inversion algorithm may return a point outside the aaised
space. The reconstruction error by the inversion methodyoan
arbitrarily. However, the iterative algorithm being caasted, will
have a reconstruction error of at most two.
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Figure 6: Condition number of the transition matrix

Condition number: Figure 6 shows the condition number [14] of
the transition matrix using a logarithmic scale onytaxis, and the
number of columns reconstructed on thaxis, for different reten-
tion probabilities (p= 0.2, 0.5 etc.). The selectivity othgred-
icate is setto 0.5. The condition number (which is indepahde
of the dataset) increases as the retention probabilityedses and
increases exponentially as the number of columns recanstiu
increase. The condition number is a good indicator of themec
struction error by the inversion algorithm [14], and by ttexative
Bayesian algorithm at small error values. Unlike the cardirs ex-
ponential growth in error as the number of reconstructedrook
increases for the inversion algorithm, the error flatterisfauthe
iterative algorithm, as it is bounded above by two as disdissr-

7.2 Scalability

Next we study, how the reconstruction error varies as thebaum
of columns reconstructed, retention probability, numbierows,
and selectivity of the predicates vary.

Reconstruction Error
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Figure 7: Reconstruction errors for the Adult dataset for varyingereton
probabilities, p, by the iterative algorithm.
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Figure 8: Reconstruction errors for the Adult dataset for varyingereton
probabilities, p, by the inversion algorithm.

Number of columns and retention probability: We study the re-
construction errors for varying number of columns and réden
probabilities on the Adult dataset by the iterative and iisian al-
gorithms. The predicates being reconstructed are age[ 2, - 4
fniwgt[ 100000 - 1000000], hrsweek[ 30 - 60] and edulevel[ 5 -
10]. For thei (1 <i < 4) column experiment, the firstamong
the above predicates are selected in the query. Figure 7ssthewv
reconstruction errors with the iterative algorithm, whidigure 8
shows the reconstruction errors with the inversion alparitBoth
iterative and inversion algorithms show an exponentialgase in
the error as the number of columns increases and as the proba-
bility of retention decreases. For smaller number of colsrand
higher retention probabilities both algorithms give conade re-
construction errors. However for larger number of columnd a
lower retention probabilities the iterative algorithm egvsmaller
errors than the inversion algorithm. As explained in Secfidl,
unlike the iterative method, the reconstruction error l®y ithver-
sion method can grow arbitrarily, whereas the error by theative
method flattens out after an initial exponential increase.
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Figure 9: Reconstruction error by iterative method on Zipfian datasit
10° rows varying number of columns

For all experiments on the Zipfian dataset, the predicateaoch e
column has an independent selectivity of 0.5. Figure 9 shbws
reconstruction error after the iterative algorithm is agblto the
perturbed Zipfian dataset of size®1The figure shows the increase
in the reconstruction error, plotted on tleaxis, for increasing
number of columns, plotted on theaxis, for different retention
probabilities. After an initial exponential increase, teeonstruc-
tion error flattens out.
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Figure 10: Reconstruction error by iterative method on Zipfian dataset
varying number of rows for 8 columns.

Number of rows in the table: Figure 10 shows how the recon-
struction error decreases as the number of perturbed railalale
for reconstruction increase, for the the iterative recasion al-
gorithm. In Figure 10 the retention probabilities are vdnehile
the number of columns remains fixed at 8. For large valuestio¢
reconstruction error decreasesa®® as suggested by Theorem 1.
This is also ratified by the factor 10 displacement betweerré¢h
construction error lines for £&nd 16 rows in Figures 11 and 12.
As the number of rows increases, it is possible to recorsinace
columns together at smaller retention probabilities.

Selectivity of the predicates: Recall thate = xx_; is estimate
for the aggregate query ard= X/zk,]_ is the actual answer for this
query.|le— @ is the called the absolute error whjge- al/ais called
the relative error. Since we are interested in the variatibthe
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Figure 11: Absolute Error for the Zipfian dataset for p=0.2 for varying
interval sizes.

Relative Error

1¢
3 10° rows —+—
10; rows %=
107 rows k-
5 0.1 ?"’*—
> e -
= % e x e o
14 L TR Koo
0.01 S
L X
0.001 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fractional interval width

Figure 12: Relative Error for the Zipfian dataset for p=0.2 for varying
interval sizes.

error in the aggregate query with the selectivity of its jcate,
for this set of experiments, we use the absolute and relatiags,
instead of thd; norm of the difference of the p.d.f.vectors, as the
error metric.

For the experiments a single Zipfian column is used with uni-
form perturbation with retention probabilify = 0.2. We vary the
selectivity of the predicate of the numeric column by vagythe
size of the interval in the range predicate. Figure 11 andr€ig2
study the variation in absolute and relative errors re$gedygt as
the size of the interval being queried changes. The fraatioer-
val width, i.e. the ratio of the size of the interval being Hed to
the entire domain of the column, is plotted on thaxis while the
error is plotted on thg axis. The absolute error in Figure 11 does
not vary much with the interval width. However the relativeoe
in Figure 12 increases as the interval width decreases. tBetab-
solute and relative errors decrease as the number of rovlatdea
for reconstruction increases.

7.3 Privacy Breach Guarantees

We study privacy breaches possible after perturbation en th
Adult dataset. Figure 13 and Figure 14 show the maximum re-
tention probability that avoids breaches for varying valagp, for
fixed p, = 0.95, according to Theorem 5. To compute the val-
ues ofs for sample predicates (subsets) of this dataset, we divide
each column into 10 equiwidth intervals and consider peddi



Privacy guarantees for posterior probability = 0.95 perturbed table, and develop algorithms to reconstructipheil
columns together. We provide privacy guarantees that take i
account correlations between any combination of categoric
and numeric columns.

e \We provide two reconstruction algorithms to work with reten
tion replacement perturbation: an iterative Bayesianrétyn,
and a matrix inversion algorithm that also yields the maximu
likelihood estimator. These algorithms can reconstrucinco
aggregates over subcubes without assuming independence be
tween columns.

0 ) ) ) ) . e \We evaluate proposed reconstruction algorithms both &naly

0 0.2 0.4 0.6 0.8 1 ically and empirically. We study the privacy guarantees we
Apriori Probability get for different levels of reconstruction accuracy andsstite
practicality of our techniques.

e \We show the use of our techniques to related applicatioes lik
Privacy guarantees for posterior probability = 0.95 classification.

0.2 |-

Maximum retention probability p

Figure 13: Privacy for two columns for Adult data.

Future work includes extending this work to other aggregate
over subcubes.
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10. APPENDIX

Theor em1. Let the fraction of rows inlw, high] in the origi-
nal table,f be estimated by, thenf’ is a (, €, 5) estimator forf
if n > 4log(2)(pe)~2
PROOE Let Y; be the indicator variable for the event that ife
row (1 < i < n)is perturbed and the perturbed value falls within
[low, highl. Y are i.id. withPr[Y; = 1] = (1-p)b = q
(say), Pr[Y; = 0] = 1 - 9. Let X be the indicator variable
for the event that thé" row is not perturbed and it falls within
[low, high]. Once againX; are i.i.d. withPr[X; = 1] = pf =r
(say), Pr[X; = 0] = 1 -r. LetZ be the indicator variable for
the event that thé" randomized row falls inlpw, high]. We have

Z = X+Y;,andPr[Z = 1] = g+r =t (say), andPr[Z = 0] =

LetZ = ¥, Z = n,, the number of randomized values in range
[low, high]. Sincez’s are independent Bernoulli random variables,
O<t<landn>4 Iog(§)(pe)*2 x t, applying Chernoff bounds[7]
we get

Pe

_nte?
Pr[|Z — nt| > ntd] <2 <5 for 6= T

Thus with probability> 1-§, we have-npe < Z-nt=n,—n(pf+
(1 - p)b) < npe, which implies

foec M _(-phigh—low) o
pn p(max— min)
Hence|f — f'| < e with probability> 1 — 6.

O

Theor em2. The vectorx calculated aAly is the maximum
likelihood estimator (MLE) of the relaxed a priori distrifien 2 on
the states that generated the perturbed table.
PROOF LetV = (V},Vv2\8,..V") be the observed state values
for the n perturbed rows inT". Lett = 2 - 1. Note that
Ve {0,1,2,....t} for all i € [1.n]. If L(x) is the likelihood of
the observationsy, given a probability distribution on the states,
X, in the original data, theh(x) = Pr(V|x) = [IL, Pr(V|x) =
[T (G Ziooawi X)) = [Ti-o(2 Xl @jix;)" (reordering according to
the values of.) Maximizing L(X) is equivalent to maximizing
log(L(x)).

t t
max log(L(x)) = Z(yi X |09(% Z Xjaji))
i=0 j=0

subject to the constraif}|_, x; = n.
This is equivalent to

t t t
m)fixmﬂinl(x, A) = Z(yi Iog(r—:: Z Xjaji)) - /I(Z Xj —n)
i=0 =0 =0

whereA is the Lagrangian multiplier.

If le:o Xj—n > 0then setting! to arbitrarily large positive value,
you can minimize the term/l(ztjzo X; —n) to an arbitrarily small
negative number, similarly Wheﬁtj=0 Xj —n < 0, asA tends to-co
the term becomes arbitrarily small. So the optimum ensuras t
the constraind’|_, x; = nis satisfied.

To maximize the expression, setting the partial derivatieebe
zero we get,

Zy, -1=0V0<s<t
Z]O i Qji

and2 = ¥ ;X -n=0.

Matrix A is stochastic, i.e.z}zo as = 1VY0 < s <t as they
are probabilities of transition out of a state. Consider &
vector, x = yA™! calculated by the algorithm. For this vectnr
Z, 0 Xj&i = Yi. Hence substituting abovgi(—S S oy,@ -1=
Yioasi—-A=1-1

Also le=0 yj = th=0 Yio Xajj = Yio th=0 X aj
= Yo% Z] 08 = Xio X ASZE:oyj = nwe haveyj % = n,
satisfyingZ: = 0.

Thus atx given byx = yA™!, andA = 1 we get a local maximum
of I(x, 1). We show that the local maximum is the global maximum,

%i.e. 3 % =nand 0< x < nare the exact constraints, the relaxed
constraint only ensures; x; = n




by analyzing the Hessian matritd, of I(x, 1) and showing<"Hx <
0, for all x € R!. Elements of H are given by,

AjhAsh

i=———=—) Yh-————-VY¥0<si<m
hi 6x 6)(. Z (=) 0x,ajh)2

AjhAsh

t
= - Yoo XsXi
< Z (Zio0Xiajn)? °
Phaih@shXi Xs

where
éh =

Thus

t t t
X Hx = quhzzamasmxs

0

T
o
-1
<)
s

(3% (Z ashxs)

= ¢h(2 ashXs) Z ainX
¢h(z ashxs)(z anx)

¢h(z ainx)? <0

h=0

-~ 1
-

O

Theor em3. The median value of relative a priori probability,
over all subset§, S C Vy, is 1.
PROOFE Consider, any subs& C Vy, andS = Vy - S. Using
notation as in Definition 5 we havg;, + ps = 1 andms + ms = 1.
Hence ifps/ms > 1, we have ps/ms < 1 and if ps/ms < 1 we
have ps/ms > 1 Since this is true for any pair of complementary
subsets, among all subsets\6f, half the subsets have relative a
priori probability > 1 and half< 1. Hence the median value ef
over all subsets of'x will be 1, if the median is not constrained to
be one of the values attained.
O

Theor em4. Let p be the probability of retention, then uniform
perturbation applied to a single column is secure agairspa, (©2)
breach, if

< p2—p1)(1-p)
(1-p2)p
PROOF. Let S ¢ Vx with P[S] = ps according to the a priori
distribution andP[S] = ms according to the replacing p.d.f. L&t

andY denote the random variables for the original and perturbed

value respectively. LaR denote the event that was replaced and
R it being retained. For &, p2) privacy breach with respect ®
we needP[X € S] < p;. Also P[(X € S)|(Y € S)]
_PI(XeS)n(YeS)NR +P[(Xe S)n(Y e S)n R
- P[Y € S]

_ p(l-pms+ pps
~ (@L-pme+pps

This is becaus®[(X € S)n (Y € S)Nn R = P[X € S]P[Y €
SIRIP[R] < p1(1 - p)ms andP[(X € S)n (Y € S)NnR] = P[(X €
S)NR] = pps. Thus ifP[X € S|Y € S] > po,
p1(1 = p)ms + pps >
T e L 2 P2
(1- p)ms+ pps
Hence for af1, p») privacy breach with respect ®, we need
bs (o2 = p)(1-p)
ms — (1-p2)p

O
Theor em5. There will not be adj, p,) privacy breach for$; x
Syx...S)=ScD,if

Ps _ p2(1-p1)(1 - p)*

M5 (1-p2) [T((L - P)ms, + P)
PROOE Let X = (X, Xz, ..., Xs) be the random variable corre-
sponding to the original value of thkecolumn row from the a priori
distribution on tabld’, andY = (Y3, Ya, ....Y) that corresponding to
the perturbed row, where each column is perturbed indepgiyde
by a retention replacement perturbation. ParB; C D; we have
PLY; € BiIX € A] = (1 - pmg, + pp‘ggB' for1<i <k Thus
(1-pmg < P[Yi € BiIXi € A] < (1 - p)mg + p. Thus for
A, B c D we havelg (say)= [1<,(1- p)mg < P[Y € B[X € A] <
[T4((1 - P)mg, + p) = Ug (say).P[(X € S)I(Y € S)] =

P[(Y € S)|(X € S)]P[X € S]
P[(Y € S)I(X € S)]P[X € S] + P[(Y € S)~(X € S)]P[~(X € S)]

Usps
US Ps + Ls(1 - ps)
Suppose there is @f, p,) privacy breach with respect 18, we
needP[X € S] < p1, andP[(X € S)|(Y € S)] = p, Thus
Usps
Usps + Ls(L— pg) ~ **
This implies
Ps P2
Ls(1-ps) ~ Us(1-p2)
Substituting values dfls, Ls and noting thaps < p; hence +ps >
1-p;, we get
s p2(1-p1)(1 - p)*
Mams — (1-p2) [T - Pms, +p)




