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ABSTRACT
We present techniques for privacy-preserving computationof mul-
tidimensional aggregates on data partitioned across multiple clients.
Data from different clients is perturbed (randomized) in order to
preserve privacy before it is integrated at the server. We develop
formal notions of privacy obtained from data perturbation and show
that our perturbation provides guarantees against privacybreaches.We
develop and analyze algorithms for reconstructing counts of sub-
cubes over perturbed data. We also evaluate the tradeoff between
privacy guarantees and reconstruction accuracy and show the prac-
ticality of our approach.

1. INTRODUCTION
On-line analytical processing (OLAP) is a key technology em-

ployed in business-intelligence systems. The computationof multi-
dimensional aggregates is the essence of on-line analytical process-
ing. We present techniques for computing multidimensionalcount
aggregates in a privacy-preserving way.

We consider a setting in which clientsC1,C2, . . .Cn are con-
nected to a serverS. The server has a tableT(A1,A2, . . . ,Am),
where each columnAi comes from a numeric domain. Each client
Ci contributes a rowr i(ai1 , ai2 , . . . , aim) to T. The server runs aggre-
gate queries of the form

select count(*) from T
where Pj1 and Pj2 . . . and Pjk.

HerePj i is a range predicate of the formal i ≤ Aj i ≤ ahi , denoted
as Aj i [al i ,ahi ]. We use count(Pj1 ∧ Pj2 . . . ∧ Pjk) to succinctly
represent the above aggregate query.

We take the randomization approach to preserving privacy. The
basic idea is that every clientCi perturbs its rowr i before sending
it to the serverS. The randomness used in perturbing the values
ensures information-theoretic row-level privacy. Figure1 gives the
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Figure 1: Privacy preserving computation of multidimensional countag-

gregates.

schematic of our approach.S runs queries on the resultant per-
turbed tableT ′. The query meant for the original tableT is trans-
lated into a set of queries on the perturbed tableT

′

. The answers to
these queries are then reconstructed to obtain the result tothe origi-
nal query with bounded error. We show that our techniques aresafe
against privacy breaches.

The perturbation algorithm is publicly known; the actual ran-
dom numbers used in the perturbation, however, are hidden. To
allow clients to operate independently, we use local perturbations
so that the perturbed value of a data element depends only on its
initial value and not on those of the other data elements. Different
columns of a row are perturbed independently. We useretention re-
placementschemes where an element is decided to be retained with
probability p or replaced with an element selected from a probabil-
ity distribution function (p.d.f.) on the domain of elements.

The proposed techniques can also be used for database tables
in which some of the columns are categorical. They are also ap-
plicable in the settings in which the database tables are partitioned
horizontally or vertically.

The organization of the rest of the paper is as follows. We start
off with a discussion of related work in Section 2. Section 3 for-
mally defines the retention replacement perturbation. Section 4
presents the reconstruction algorithms. Section 5 presents the guar-
antees against privacy breaches offered by our techniques.In Sec-



tion 6, we discuss how our techniques can be extended to categor-
ical data. We also discuss some additional perturbation techniques
and describe how our techniques can be used in data mining by
showing how to build a decision tree classifier. Section 7 presents
an empirical evaluation of our techniques. We conclude witha
summary and directions for future work in Section 8. The proofs
of our results have been collected in the Appendix.

2. RELATED WORK
The techniques for preserving privacy while answering statistical

queries developed in the statistical database literature can be classi-
fied intoquery restriction, input perturbationandoutput perturba-
tion [1]. Both query restriction and output perturbation are applica-
ble when the entire original unperturbed data is available in a sin-
gle central repository, which is not true in our setting, where clients
randomize their data before providing it to the server. Our scenario
fits in the framework of input perturbation, where the goal isto cre-
ate a version of the database that can be publicly released (e.g. cen-
sus data), yet the individual rows should not be recoverable. Local
perturbation for a single column has been studied in [24]. However
most previous work (e.g., [20]) assume that during perturbation the
entire database is available at a single site, while we require local
perturbations at each client.

The use of local perturbation techniques to preserve privacy of
individual rows while allowing the computation of data mining
models at the aggregate level was proposed in [4]. They used
an additive perturbation technique, in which a random perturba-
tion is added to the original value of the row, where the perturba-
tion is picked from another probability distribution function (e.g.
Gaussian). They showed that it was possible to build accurate de-
cision tree classification models on the perturbed data.

However, it is difficult to provide guarantees against privacy
breaches when using additive perturbation. For instance, if we add
a Gaussian random variable with a mean 0 and variance 20 to age,
and for a specific row the randomized value happens to be−60, one
can estimate with high confidence that the original value of age was
(say) less than 20. Additive schemes are also restricted to numeric
data. Finally, the algorithms in [4] reconstruct each column inde-
pendently. Since OLAP requires queries over multiple columns, it
is essential to be able to reconstruct them together.

The problem of privacy-preserving association-rule mining was
studied in [9, 10, 21]. The randomization schemes used in these
works are similar to the retention replacement schemes we con-
sider. However these studies are restricted to boolean data.

Formal definitions of privacy breaches were proposed in [9],and
an alternate approach to defining privacy guarantees was proposed
in [6]. We adapt the definitions from [9] to allow more accurate re-
construction while still providing strong privacy guarantees. As our
notion of privacy encompasses multiple correlated columnsover
vertically partitioned tables, it extends to privacy breaches (called
disclosure risk) considering row linkage, studied in statistical dis-
closure control methods and [11].

There has been recent work [22, 23] to specify authorizationand
control inferences for OLAP data cubes. However the model as-
sumes that the data resides at a single server, unlike our problem,
where private data is integrated from multiple clients.

Another related area is that ofsecure multiparty computa-

tion [13, 25], that allows any function, whose inputs are shared
between multiple clients to be evaluated, such that nothingother
than the result is revealed. Since the general protocols areexpen-
sive, efficient protocols have been proposed for specific database
and data mining operations, e.g. [3, 8, 12, 16, 19]. However,these
protocols are designed for a small number of clients.

3. DATA PERTURBATION
A single record of the table is referred to as arow, while an

attribute is referred to as acolumn. A single column from a single
row is the granularity of perturbation and is referred to as adata
element.

DEFINITION 1. Perturbation Algorithm: A perturbation al-
gorithmα is a randomized algorithm that given a table T creates a
table T

′

having the same number of rows and columns.

We will denote the unperturbed table asT and the perturbed table
asT

′

. The perturbation algorithm is public. However, the actual
random numbers used by it are hidden.

Let ti j and t
′

i j denote the value of the element in thei th row of

the j th column in tablesT andT
′

respectively. The perturbation
algorithm is said to belocal if t

′

i j depends only onti j , while it is

said to beglobal if t
′

i j depends on other elements in thej th column
of T.

Let D j denote the domain of elements in thej th column ofT.
D j is said to be continuous for numeric columns, and discrete for
categorical columns. For the class of perturbation algorithms we
study, for every column being perturbed, we require the perturba-
tion algorithm to select a fixed probability density function (p.d.f.)
on the column’s domain. For thej th column we call this p.d.f. the
replacing p.d.f.on D j . Both D j as well as the replacing p.d.f. on
D j are public.

DEFINITION 2. Retention Replacement Perturbation: Re-
tention replacementperturbation is a perturbation algorithm,
where each element in column j is retained with probability pj , and
with probability(1− pj) replaced with an element selected from the
replacing p.d.f. on Dj . That is,

t
′

i j =

{

ti j with probability pj

element from replacing p.d.f. on Dj with probability (1-pj ).

If column j of the table can be revealed without perturbation we
setpj = 1.

Retention replacement perturbation, where the replacing p.d.f. is
the uniform p.d.f. is calleduniform perturbation. We assume that
each column of the tableT

′

has been perturbed independently using
uniform perturbation. In Section 6.2, we show that uniform pertur-
bation provides better privacy guarantees for rare events.Other
alternatives and comparisons are also given in the same section.

4. RECONSTRUCTION
An aggregate function on the original tableT, must be recon-

structed by accessing the perturbed tableT
′

. The accuracy of the
reconstruction algorithm is formalized below by the notionof ap-
proximate probabilistic reconstructability.

DEFINITION 3. Reconstructible Function: Given aperturba-
tion α converting table T to T

′

, a numeric function f on T is said



to be (n, ǫ, δ) reconstructible by a function f
′

, if f
′

can be evalu-
ated on the perturbed table T

′

so that| f
′

− f | < max(ǫ, ǫ f ) with
probability greater than(1−δ) whenever the table T has more than
n rows. The probability is over the random choices made byα.

For boolean functions, (n, δ) reconstructability needsf and f
′

to
agree exactly with probability greater than (1− δ).

Referring to Figure 1, to answer the aggregate querycount(P1 ∧

P2∧. . .Pk) onk columns of the original table,T, a set of 2k queries,
count(P1∧P2∧ . . .Pk), count(¬P1∧P2∧ . . . Pk), count(P1∧¬P2∧

. . .Pk), count(¬P1∧¬P2∧. . .Pk) . . .count(¬P1∧¬P2∧. . .¬Pk) are
generated. These queries are evaluated on the perturbed table T

′

.
The answers onT

′

are reconstructed into estimated answers for the
same queries onT, which include the answer to the original query.

Without loss of generality, assume that the predicates are only
over perturbed columns. We present reconstruction algorithms for
numeric columns. These algorithms can be extended to categorical
columns too as shown in Section 6.

4.1 Reconstructing Single Column Aggre-
gates

Consider the uniform retention replacement perturbation with re-
tention probabilityp applied on a database withn rows and a sin-
gle column,C, with domain [min, max]. Consider the predicate
P = C[low, high]. Given the perturbed tableT

′

, we show how to
estimate an answer to the querycount(P) on T.

Let tablesT, T
′

each haven rows. Letnr = count(P) evaluated
on tableT

′

, while no = count(P) estimated for tableT. Givennr

we estimateno as

no =
1
p

(nr − n(1− p)b) , where b=
high− low
max−min

.

The intuition is that out of then rows in tableT, the expected num-
ber of rows that get perturbed isn(1− p). For uniform perturbation,
a b fraction of these rows, i.e.n(1 − p)b rows, will be expected to
lie within the [low,high] range. The total number of rows observed
in range [low,high] in T

′

, nr , can be seen as the sum of those rows
that were decided to be perturbed into [low,high] (from outside,
or perturbed and retained within the interval) and those rows that
were unperturbed in the original interval. Subtracting then(1− p)b
perturbed rows fromnr , we get an estimate for the number of un-
perturbed rows, with values in [low,high] in T. This is scaled up
by 1/p to get the total number of original rows inT in [low,high],
as only ap fraction of rows were retained.

The fraction f of rows originally in [low,high] is therefore esti-
mated as

f
′

=

no

n
=

nr

pn
−

(1− p)(high− low)
p(max−min)

.

Not only is the above estimator a Maximum Likelihood Estima-
tor (MLE) as shown in Section 4.2, it reconstructs an approximate
answer with high probability.

THEOREM 1. Let the fraction of rows in[low,high] in the orig-
inal table f be estimated by f

′

, then f
′

is a (n, ǫ, δ) estimator for f
if n ≥ 4 log(2

δ
)(pǫ)−2.

We now formalize the above reconstruction procedure. This for-
malization provides the basis for the reconstruction of multiple
columns in Section 4.2.

Let vectory = [y0, y1] = [count(¬P), count(P)] be the answers
on tableT

′

, and let vectorx = [x0, x1] = [count(¬P), count(P)]
denote the estimates for tableT. Let b be defined as before and
a = 1 − b. As only tableT

′

is available,x is estimated using the
constraintxA = y, which gives the estimatorx = yA−1. HereA is
the following transition matrix

[

(1− p)a+ p (1− p)b
(1− p)a (1− p)b+ p

]

.

The element in the first row and first column ofA, a00 = (1−p)a+p
is the probability that an element originally satisfying¬P in T after
perturbation satisfies¬P in T

′

. This probability was calculated as
the sum of the probabilities of two disjoint events. The firstbeing
that the element is retained, which occurs with probabilityp. The
second being that the element is perturbed and after perturbation
satisfies¬P, which together has probability (1− p)a. The element
a01 is the probability that an element satisfying¬P in T after per-
turbation satisfiesP in T

′

. The elementa10 is the probability that
an element satisfyingP in T after perturbation satisfies¬P in T

′

.
The elementa11 is the probability that an element satisfyingP in
T after perturbation satisfiesP in T

′

. Their values were similarly
derived.

If y = [n−nr ,nr ] andx = [n−no,no], the solution to the equation
below gives the same estimator as derived earlier:

[

n− no no

]

[

(1− p)a+ p (1− p)b
(1− p)a (1− p)b+ p

]

=

[

n− nr nr

]

.

4.2 Reconstructing Multiple Column Aggre-
gates

Assume now that the uniform retention replacement perturba-
tion, with retention probabilityp, has been applied to each ofk
columns of a table,T. Consider the aggregate querycount(P1 ∧

P2 ∧ ...Pk) on tableT. In practicek is small.
We create ak×2 matrix,R, with k rows and 2 columns, having 1

row for each query column.Ri,1 gives the probability that a number
randomly selected from the replacing p.d.f. for columni will sat-
isfy predicatePi, while Ri,0 is the probability of the complementary
event, that a number selected from the replacing p.d.f. willsatisfy
¬Pi.

Take for instance the query, Q=count(age[30-45]∧ salary[50k-
120k] ∧ house-rent[700-1400]) with the domains for age, salary
and house-rent being [0-100], [25k-200k], [500-2500]. Then Rwill
be [[0.85, 0.15], [0.6,0.4], [0.65, 0.35]], since the first column being
age[30-45] impliesR1,1 = (45− 30)/(100− 0) = 0.15, whileR1,0 =

1− 0.15= 0.85, etc.
As stated earlier, to answer the querycount(P1 ∧ P2 . . .Pk), we

ask 2k aggregate queries on the perturbed table,T
′

. The 2k answers
on perturbed tableT

′

are converted into estimated answers to these
2k aggregate queries on the original table T, which includes the
estimated answer to the original query.

Let y be a row vector of size 2k that has the answers to the above
queries on perturbed tableT

′

, and letx be a row vector of size
2k that has the reconstructed estimated answers to the querieson
original tableT. We order the answers to the 2k queries in vectors
x, y using the bit representation of the vector index as shown in
Figure 2. LetQ(r,1) denote the predicate(Pr ) on ther th column of
queryQ, andQ(r,0) its negation (¬Pr). Let bit(i, r) denote ther th



Query Estimated onT Evaluated onT
′

count(¬P1 ∧ ¬P2) x0 y0

count(¬P1 ∧ P2) x1 y1

count(P1 ∧ ¬P2) x2 y2

count(P1 ∧ P2) x3 y3

Figure 2: Answering query count(P1 ∧ P2)

bit from the left in the binary representation of the numberi using
k bits. Then,
xi = count(∧k

r=1Q(r,bit(i, r))) in T, for 0 ≤ i ≤ 2k − 1;
yi = count(∧k

r=1Q(r,bit(i, r))) in T
′

, for 0 ≤ i ≤ 2k − 1.
For example, for the querycount(age[30-45]∧ salary[50k-120k]

∧ house-rent[700-1400]),y[610] = y[1102] = count(age[30-45]∧
salary[50k-120k]∧ ¬ house-rent[700− 1400])

By a single scan through the perturbed tableT
′

vectory can be
calculated. Vectorx is reconstructed from vectory using the matrix
inversion technique or the iterative Bayesian technique described
below. The data analyst may either be interested only in the com-
ponentx2k−1, which is the answer to thecount(∧k

r=1Pr) query onT,
or she may be interested in the entire vectorx.

4.2.1 Matrix Inversion technique

If pr is the retention probability for ther th column, we calculate
vectorx from vectory asx = yA−1. The transition matrix,A, with
2k rows and 2k columns, can be calculated as the tensor product
[15] of matrices

A = A1 ⊗ A2 ⊗ A3.... ⊗ Ak

where the matrixAr , for 1 ≤ r ≤ k is the transition matrix for
columnr (see Section 4.1).

Ar =

[

(1− pr )ar + pr (1− pr)br

(1− pr )ar (1− pr)br + pr

]

wherebr = Rr,1 andar = Rr,0 = 1− Rr,1.
The entries of the tensor product matrix,A, can be explicitly

calculated to be
ai j =

∏k
r=1((1 − pr) × Rr,bit( j,r) + pr × δ(bit(i,r),bit( j,r))),

∀0 ≤ i < 2k,0 ≤ j < 2k

whereδ(c,d) = 1 if c = d, and 0 ifc , d, for c, d ∈ {0,1}.

We split the space of possible evaluations of a row into 2k states,
according to which of the 2k mutually exclusive predicate combi-
nations the row satisfies. We say a row is said to belong to state
i if it satisfies the predicate∧k

r=1Q(r,bit(i, r)). For example, from
Figure 2, a row in state 0 satisfies¬P1 ∧¬P2 while a row in state 1
satisfies¬P1 ∧ P2 etc.

The entryai j of matrix A above represents the probability that a
row belonging to statei in T, after perturbation belongs to statej
in T

′

. As each column was independently perturbed the probability
of transition from statei to statej is the product of the probabilities
for the transitions on all columns. The contribution from the r th

column to the transition probability is the sum of (1− pr )×Rr,bit( j,r),
if the element was decided to be perturbed, andpr × δ(bit(i,r),bit( j,r)),
if the element was decided to be retained. The termδ(bit(i,r),bit( j,r))

ensures that the retention probabilitypr adds up only if the source
and destination predicates on ther th column are the same for states

i and j. Thus the probability of transition from statei to statej on
ther th column is (1−pr )×Rr,bit( j,r)+pr×δ(bit(i,r),bit( j,r)). The product of
this probability over all columns gives the probability of transition
from statei to statej, ai j .

THEOREM 2. The vector x calculated as A−1y is the maximum
likelihood estimator (MLE) of the relaxed a priori distribution (
∑

i xi = n and0 ≤ xi ≤ n are the exact constraints, the relaxed
constraint only ensures

∑

i xi = n) on the states that generated the
perturbed table.

The multiple column aggregate is (n, ǫ, δ) reconstructible, is shown
by applying the Chernoff bound, to bound the error iny, and then
bounding the error added during inversion.

4.2.2 Iterative Bayesian technique
Let vectorsx andy of size 2k be the a priori distribution on states

of the original rows, and posteriori distribution on statesof per-
turbed rows, as introduced above. Let the original states ofrows
in T selected from the a priori distribution be given by random
variablesU1,U2, ....Un, while the states of then perturbed rows
in T

′

be given by the random variablesV1,V2, ...Vn. Then for
0 ≤ p,q ≤ t = (2k − 1) and 1≤ i ≤ n, we havePr(Vi = q) = yq/n,
and Pr(Ui = p) = xp/n. Also Pr(Vi = q|Ui = p) = apq is the
transition probability from statep to q.

From Bayes rule, we get

Pr(Ui = p|Vi = q) =

P(Vi = q|Ui = p)P(Ui = p)
P(Vi = q)

=

P(Vi = q|Ui = p)P(Ui = p)
∑t

r=0 P(Vi = q|Ui = r)P(Ui = r)

=

apq
xp

n
∑t

r=0 arq
xr
n

=

apqxp
∑t

r=0 arq xr
.

We iteratively updatex using the equation

Pr(Ui = p) =
t
∑

q=0

Pr(Vi = q)Pr(Ui = p|Vi = q).

This gives us the update rule,

xT+1
p =

t
∑

q=0

yq

apqxT
p

∑t
r=0 arq xT

r

,

where vectorxT denotes the iterate at stepT, and vectorxT+1 the
iterate at stepT + 1.

We initialize the vector,x0
= y, and iterate until two consecutive

x iterates do not differ much. This fixed point is the estimateda
priori distribution. This algorithm is similar to the iterative proce-
dure proposed in [4] for additive perturbation and shown in [2] to
be theExpectation Maximization(EM) algorithm converging to the
Maximum Likelihood Estimator(MLE).

4.2.3 Error in Reconstruction
We provide here a brief analysis of the error in the reconstruc-

tion procedures. A quantitative analysis of the magnitude of error is
easy for the inversion method, but such an analysis is much harder
for the iterative method. Due to the randomization in the pertur-
bation algorithm there are errors in the transition probabilities in



matrix A. This causesy, the posteriori distribution after perturba-
tion calculated fromT

′

, to have errors. Hence the reconstructedx
will have errors.

The error decreases as the number of rows,n, increases. Let
a
′

i j denote the actual fraction of original rows of statei that were
converted to statej. Then asn increases,ai j will be a closer ap-
proximation toa

′

i j . The error decreases asn−0.5 as indicated by
Theorem 1, and verified empirically in Section 7.

The error in reconstruction increases as the number of recon-
structed columns,k, increases, and the probability of retention,p,
decreases. The largest and smallest eigenvalues ofA can be shown
to be 1 andpk respectively and the condition number of the matrix
A grows roughly asp−k (see Section 7). The condition number of
a matrix is a good indicator of the error introduced during inver-
sion [14].

5. GUARANTEES AGAINST PRIVACY
BREACHES

Private data from multiple clients is perturbed before being in-
tegrated at the server. In this section, we formalize the privacy
obtained by this perturbation.

The notion of a (ρ1, ρ2) privacy breach was introduced in [9]. We
extend this to introduce a new privacy metric, called the (s, ρ1, ρ2)
privacy breach. Consider a database of purchases made by indi-
viduals. It is quite likely that many people buy bread, but not many
buy the same prescription medicine. The new metric is more con-
cerned about whether an adversary can infer from the randomized
row which medicine a person bought, and is less concerned about
the adversary determining with high probability that the original
row had bread, as most individuals buy bread and it does not dis-
tinguish the individual from the rest of the crowd.

Assume that the adversary has access to the entire perturbedta-
ble T

′

at the server, and the exact a priori distribution on the un-
perturbed data (which can be reconstructed [4])1. Also assume that
any external information is already incorporated into the database.

5.1 Review of(ρ1, ρ2) Privacy Breach
Consider a data element of domainVX perturbed by a perturba-

tion algorithm into another domainVY.

DEFINITION 4. (ρ1, ρ2) Privacy Breach[9]: Let Y denote the
random variable corresponding to the perturbed value and X that
corresponding to the original value obtained from the a priori dis-
tribution. We say that there is a(ρ1, ρ2) privacy breach with re-
spect to Q ⊆ VX if for some S ⊆ VY P[X ∈ Q] ≤ ρ1 and
P[X ∈ Q|Y ∈ S] ≥ ρ2 where0 < ρ1 < ρ2 < 1 and P[Y ∈ S] > 0.

Intuitively suppose the probability of an event, (age≤ 10) (say),
according to the a priori probability is≤ ρ1 = 0.1 (say). After
observing the perturbed value, if the posteriori probability of the
same event increases to≥ ρ2 = 0.95 (say), then there is a (0.1,0.95)
privacy breach with respect to the event (age≤ 10).

5.2 (s, ρ1, ρ2) Privacy Breach
1From Section 4.1, the error in the reconstructed a priori distribu-
tion for very selective predicates is large. This adds to theprivacy
of the perturbed rows.

In retention replacement perturbations, which are of interest to
us, the column is perturbed back into the same domain, and hence
VX = VY. Let S ⊆ VX, with P[X ∈ S] = ps, for X ∈o VX where∈o

represents selecting an element fromVX according to the a priori
distribution onVX. Let P[Y ∈ S] = ms, for Y ∈r VX, where∈r rep-
resents selecting an element fromVX according to the replacing dis-
tribution, which is different from the distribution of the perturbed
table. The ratiops/ms is called therelative a priori probabilityof
the setS.

The relative a priori probability is a dimensionless quantity that
represents how frequent a set is according to its a priori probability
as compared to the replacing p.d.f. (the uniform p.d.f.). Ina data-
base of purchases, medicines will have low relative a prioriprob-
ability since different people take different medicines, while bread
will have high relative a priori probability.

DEFINITION 5. (s, ρ1, ρ2) Privacy Breach: Let Y denote the
random variable corresponding to the perturbed value and X that
corresponding to the original value obtained from the a priori dis-
tribution.

Let S⊆ VX, we say that there is a(s, ρ1, ρ2) privacy breach with
respect to S if the relative a priori probability of S , ps/ms < s,
and if P[X ∈ S] = ps ≤ ρ1 and P[X ∈ S|Y ∈ S] ≥ ρ2 where
0 < ρ1 < ρ2 < 1 and P[Y ∈ S] > 0.

The value ofs in the privacy breach is addressed by the next
result.

THEOREM 3. The median value of relative a priori probability,
over all subsets S , S⊆ VX, is 1.

We define rare sets as those that have relative a priori probability
smaller than 1. We next show that privacy breaches do not happen
for rare sets.

5.3 Single Column Perturbation

THEOREM 4. Let p be the probability of retention, then uni-
form perturbation applied to a single column is secure against a
(s, ρ1, ρ2) breach, if

s<
(ρ2 − ρ1)(1− p)

(1− ρ2)p
.

As a concrete example, for uniform perturbation, with p=0.2,
there are no (68, 0.1, 0.95) breaches. This means for any setS, if
ρ2 > 0.95 with uniform perturbation,ρ1 will be large (> 0.1) when
ps/ms < 68. In fact, for a rare set, withs < 1, there will be no
(0.937, 0.95) privacy breaches in the original (ρ1, ρ2) model for this
perturbation.

5.4 Multiple Independently Perturbed
Columns

Let Di be the domain for columni in a k column table. Then the
domain of the table,D = D1×D2× . . .Dk. Each column of the table
is perturbed independently by a retention replacement perturbation
scheme.

There is an a priori probability distribution of the rows in ta-
ble T. Let Si ⊆ Di be a subset of the domain of thei th column
for 1 ≤ i ≤ k. Let S = S1 × S2 × . . .Sk, thenS ⊆ D. Let



P[S] = pS1×S2×...Sk = ps (say) be the a priori probability ofS. Let
P[Yi ∈ Si ] = mSi , for Yi ∈αi Di , where∈αi denotes selecting ran-
domly from the replacing p.d.f. onDi , for all 1 ≤ i ≤ k. Then
P[Y ∈ S] = mS1mS2 ..mSk = ms (say) forY = (Y1,Y2, . . .Yk) ∈α D,
where∈α denotes selecting randomly from the replacing p.d.f. for
each column independently.ps/ms, the relative a priori probabil-
ity, is the ratio of the a priori probability to the replacingprobabil-
ity, of the combination of values for the columns together. Corre-
lated columns with higher a priori probabilities have larger values
of ps/ms.

THEOREM 5. There will not be a(ρ1, ρ2) privacy breach with
respect to(S1 × S2 × . . .Sk) = S ⊆ D, if

ps

ms
<

ρ2(1− ρ1)(1− p)k

(1− ρ2)
∏k

i=1((1− p)mSi + p)
.

Si denotes the subset on columni within which the original value
must be identified for the privacy breach. In the case,Si denotes
a single value or a small range within the domain of a continuous
column, hence (1− p)mSi ≪ p. We approximate (1− p)mSi + p by
p to get

ρ2(1− ρ1)(1− p)k

(1− ρ2)
∏k

i=1((1− p)mSi + p)
≥
ρ2(1− ρ1)(1− p)k

(1− ρ2)pk
(1− ǫ)

for some small constantǫ. Thus for some small constantǫ, uniform
perturbation applied individually tok columns is secure against
(s, ρ1, ρ2) breaches for

s<
ρ2(1− ρ1)(1− p)k

(1− ρ2)pk
(1− ǫ).

As an example, for uniform perturbation with p=0.2 applied in-
dependently to two columns, there are no (273,0.1,0.95) breaches
for joint events on the columns (whenmSi are small).

6. EXTENSIONS

6.1 Categorical Data
Consider a categorical column,C, having discrete domainD. Let

S ⊆ D. A predicateP, on columnC, usingS is defined as

P(x) =

{

true if x ∈ S
f alse otherwise.

Given the a priori and replacing p.d.f. onD, the reconstruction
algorithms in Section 4 and the privacy guarantees in Section 5
can be directly applied to the categorical data by computingthe
probability of the predicate,P, being true.

6.2 Alternative Retention Replacement
Schemes

Our analysis so far considered retention replacement pertur-
bations where the replacing p.d.f is the uniform distribution.
We now discuss some other interesting retention replacement
schemes:
1 Identity perturbation: If the original data element is decided

to be perturbed, the data element is replaced by a random ele-
ment selected uniformly among all data elements [18] (i.e. the
replacing p.d.f. is the same as the a priori distribution).

2 Swapping: Swapping is closely related to identity perturba-
tion. In swapping with probabilityp we retain a data element,
and with probability (1− p) we decide to replace it. Numbers
decided to be replaced are then randomly permuted amongst
themselves.

Identity perturbation and swapping are different from uniform
perturbation which is a local perturbation. Identity perturbation
can be local if there is knowledge of the a priori distribution be-
fore perturbation. Swapping is not a local perturbation andrequires
multiple rows at the client.

6.2.1 Reconstructing Aggregates
Identity perturbation and swapping do not affect the answers to

single column aggregate queries, i.e. answers to single column ag-
gregate queries on the perturbed table,T

′

, are returned directly as
answers to those queries on the original table,T.

The difference in multi-column reconstruction for identity per-
turbation and swapping as compared to uniform perturbationis in
the evaluation of vectorR in Section 4.2. Recall thatRi,1 is the
probability that an element selected from the replacing p.d.f. on
column i satisfies the predicate on thei th column,Pi . The replac-
ing p.d.f. (which is the original p.d.f. for identity perturbation and
swapping) is required for reconstruction. This requires the server to
have the original p.d.f. for each column. This requirement is how-
ever obviated by the observation in the previous paragraph,that the
fraction of elements satisfyingPi in T is the same as the fraction of
elements satisfyingPi in T

′

. HenceRi,1 can be calculated fromT
′

.
Ri,0 as before is calculated as 1− Ri,1.

The reconstruction error after identity perturbation and swapping
will be smaller than that compared to uniform perturbation for sets,
S, with small relative a priori probability. This is because in uni-
form perturbation the noise due to the perturbed data elements that
now belong toS, but did not before perturbation, exceeds signif-
icantly the number of data elements that were inS originally and
retained during perturbation.

6.2.2 Guarantees against Privacy Breaches

The guarantees for identity perturbation and swapping can be
obtained usingmSi = pSi in Theorems 4 and 5. As an example we
restate Theorem 4 for identity perturbation.

LEMMA 1. For a single column, identity perturbation is secure
against(s, ρ1, ρ2) privacy breaches for

ρ1 <
ρ2 − p
1− p

.

PROOF: For identity perturbation,ms = ps, henceps/ms = 1 ∀S.
Repeating the argument in Theorem 4 we get (ρ2 − ρ1)(1 − p) >
(1− ρ2)p, which implies the result.

The above (ρ1, ρ2) guarantee for identity perturbation is inde-
pendent of the subsetS. Uniform perturbation gives better (ρ1, ρ2)
guarantees for a set of rare data elements, i.e. a set withps/ms < 1
and worse for sets withps/ms > 1. Identity perturbation and swap-
ping have a privacy breach in the presence of external knowledge
about rare values (eg. the largest or smallest value). Rare values
need to be suppressed (i.e. blanked out) [17] for privacy with these
perturbations.
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Figure 3: Decision Tree Example

6.3 Application to Classification
We show how aggregate queries on multiple columns can be used

for privacy preserving construction of decision trees [4].Con-
sider the tree in Figure 3 built on randomized tableT

′

with schema
(age, salary, house-rent, class-variable) to predict the column class-
variable. The column class-variable can take two values:+ and−
representing high and low credit-risk (say). The private columns
among age, salary, house-rent and class-variable, are eachinde-
pendently perturbed by a retention replacement perturbation. Let
Q denote the predicate (class-variable = ‘+’) while¬Q denote the
predicate (class-variable=‘-’).

For the first split, say on (age< 30), the gini index is calcu-
lated using the estimated answers of the four queries: count(age[0-
30] ∧ ¬ Q), count(¬ age[0,30]∧ ¬ Q), count(age[0-30]∧ Q )
and count(¬ age[0,30]∧ Q ) on T. Now consider the left sub-
tree of elements having (age< 30) using the predicate (salary
< 100k). We do not partition the randomized rows at any level
in the decision tree. Previously with additive perturbation, random-
ized rows were partitioned, and the columns were reconstructed
independently [4]. With multi-column reconstruction the queries
count(age[0-30]∧ salary[25k-100k]∧ ¬ Q), count(age[0,30]∧
salary[100k-200k]∧ ¬ Q ), count(age[0-30]∧ salary[25k-100k]
∧ Q ) and count(age[0,30]∧ salary[100k-200k]∧ Q ) are recon-
structed forT, to calculate the gini index or another split criterion
at this level.

Now consider the third split, on age once again, but this time(age
< 21), is decided after the queries count(age[0-21]∧ salary[25k-
100k] ∧ ¬ Q ), count(age[21-30]∧ salary[25k-100k]∧ ¬ Q )
count(age[0-21]∧ salary[25k-100k]∧ Q ) and count(age[21-30]
∧ salary[25k-100k]∧ Q ) are reconstructed forT. The number
of columns in the count query did not increase at this split on
age, which was already present among the original set of queried
columns.

7. EXPERIMENTS
We next present an empirical evaluation of our algorithms onreal

as well as synthetic data. For real data, we used the Adult dataset,
from the UCI Machine Learning Repository [5], which has census
information. The Adult dataset contains about 32,000 rows with
4 numerical columns. The columns and their ranges are: age[17 -
90], fnlwgt[10000 - 1500000], hrsweek[1 - 100] and edunum[1-
16].

For synthetic data, we used uncorrelated columns of data having

Zipfian distribution with zipf parameter 0.5. We create three such
tables with different number of rows. The number of rows is varied
in factors of 10 from 103 to 105. The frequencies of occurrences
are such that the least frequent element occurs 5 times. Thisresults
in the number of distinct values to be approximately one tenth of
the number of rows in the table.

7.1 Randomization and Reconstruction
In this Section we assume that the vectors,x, y described in Sec-

tion 4.2 have been normalized, i.e. all elements have been divided
by n, the number of rows, so that the sum of the elements of each
vector is 1. These vectors will also be referred to as probability den-
sity function (p.d.f.) vectors.x is the reconstructed p.d.f. vector,
obtained by the inversion or iterative method in Section 4.2, while
y is the p.d.f. vector on the perturbed table before reconstruction.
Let the exact original value of the p.d.f. vector calculateddirectly
on the unperturbed table,T, be x

′

. The l1 norm of the difference
between the estimated (x) and actual (x

′

) p.d.f. vectors is used as
the metric of error, and is referred to as thereconstruction error.
The results of the reconstruction algorithm are quite accurate when
the reconstruction error is much smaller than 1.
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data.
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Reconstruction algorithms: We first study the reconstruction er-
ror while reconstructing multiple columns of the Adult dataset
for varying retention probabilities. The predicates beingrecon-
structed are age[25-45], fnlwgt[100000-1000000] and hrsweek[30-



60]. Figure 4 shows the errors on first two among the above pred-
icates while Figure 5 shows the errors on all three predicates. The
retention probability,p, plotted on thex-axis, is the same for all
columns. The reconstruction error is plotted on they axis. There
are three curves in each figure. The curverandomized, shows the
l1 norm of the difference between the perturbed p.d.f. vectory and
the original p.d.f. vectorx

′

. It serves as a baseline to study the re-
duction in error after reconstruction ofy to x. The other two curves
represent the reconstruction errors after theiterativeand theinver-
sionalgorithms.

The iterative procedure gives smaller errors than the inversion
procedure, especially when a larger number of columns are recon-
structed together, and the probability of retention,p, is small. This
is reconfirmed later by Figures 7 and 8, and similar experiments on
synthetic data (which we do not show for the lack of space). This
may seem unintuitive as the inversion algorithm was shown togive
the MLE estimator forx, satisfying

∑

i xi = 1 (after normalization).
This can be explained by noting that the iterative algorithmgives
the MLE estimator in the constrained space, i.e. for the subspace
of
∑

i xi = 1 that satisfies 0≤ xi ≤ 1 ∀i. Since the number of
rows are always non-negative, this is the subspace that contains the
exact original p.d.f. vectorx

′

. When the retention probability de-
creases, and the number of columns to be reconstructed increases,
the error during randomization and reconstruction increases, and
the inversion algorithm may return a point outside the constrained
space. The reconstruction error by the inversion method cangrow
arbitrarily. However, the iterative algorithm being constrained, will
have a reconstruction error of at most two.
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Figure 6: Condition number of the transition matrix

Condition number: Figure 6 shows the condition number [14] of
the transition matrix using a logarithmic scale on they axis, and the
number of columns reconstructed on thex axis, for different reten-
tion probabilities (p= 0.2, 0.5 etc.). The selectivity of each pred-
icate is set to 0.5. The condition number (which is independent
of the dataset) increases as the retention probability decreases and
increases exponentially as the number of columns reconstructed
increase. The condition number is a good indicator of the recon-
struction error by the inversion algorithm [14], and by the iterative
Bayesian algorithm at small error values. Unlike the continuous ex-
ponential growth in error as the number of reconstructed columns
increases for the inversion algorithm, the error flattens out for the
iterative algorithm, as it is bounded above by two as discussed ear-

lier.

7.2 Scalability
Next we study, how the reconstruction error varies as the number

of columns reconstructed, retention probability, number of rows,
and selectivity of the predicates vary.
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Figure 7: Reconstruction errors for the Adult dataset for varying retention

probabilities, p, by the iterative algorithm.
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Figure 8: Reconstruction errors for the Adult dataset for varying retention

probabilities, p, by the inversion algorithm.

Number of columns and retention probability: We study the re-
construction errors for varying number of columns and retention
probabilities on the Adult dataset by the iterative and inversion al-
gorithms. The predicates being reconstructed are age[ 25 - 45],
fnlwgt[ 100000 - 1000000], hrsweek[ 30 - 60] and edulevel[ 5 -
10]. For thei ( 1 ≤ i ≤ 4 ) column experiment, the firsti among
the above predicates are selected in the query. Figure 7 shows the
reconstruction errors with the iterative algorithm, whileFigure 8
shows the reconstruction errors with the inversion algorithm. Both
iterative and inversion algorithms show an exponential increase in
the error as the number of columns increases and as the proba-
bility of retention decreases. For smaller number of columns and
higher retention probabilities both algorithms give comparable re-
construction errors. However for larger number of columns and
lower retention probabilities the iterative algorithm gives smaller
errors than the inversion algorithm. As explained in Section 7.1,
unlike the iterative method, the reconstruction error by the inver-
sion method can grow arbitrarily, whereas the error by the iterative
method flattens out after an initial exponential increase.
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Figure 9: Reconstruction error by iterative method on Zipfian datasetwith

105 rows varying number of columns

For all experiments on the Zipfian dataset, the predicate on each
column has an independent selectivity of 0.5. Figure 9 showsthe
reconstruction error after the iterative algorithm is applied to the
perturbed Zipfian dataset of size 105. The figure shows the increase
in the reconstruction error, plotted on they axis, for increasing
number of columns, plotted on thex axis, for different retention
probabilities. After an initial exponential increase, thereconstruc-
tion error flattens out.
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Figure 10: Reconstruction error by iterative method on Zipfian dataset

varying number of rows for 8 columns.

Number of rows in the table: Figure 10 shows how the recon-
struction error decreases as the number of perturbed rows available
for reconstruction increase, for the the iterative reconstruction al-
gorithm. In Figure 10 the retention probabilities are varied while
the number of columns remains fixed at 8. For large values ofn the
reconstruction error decreases asn−0.5 as suggested by Theorem 1.
This is also ratified by the factor 10 displacement between the re-
construction error lines for 103 and 105 rows in Figures 11 and 12.
As the number of rows increases, it is possible to reconstruct more
columns together at smaller retention probabilities.

Selectivity of the predicates: Recall thate = x2k−1 is estimate
for the aggregate query anda = x

′

2k−1
is the actual answer for this

query. |e− a| is the called the absolute error while|e− a|/a is called
the relative error. Since we are interested in the variationof the
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error in the aggregate query with the selectivity of its predicate,
for this set of experiments, we use the absolute and relativeerrors,
instead of thel1 norm of the difference of the p.d.f.vectors, as the
error metric.

For the experiments a single Zipfian column is used with uni-
form perturbation with retention probabilityp = 0.2. We vary the
selectivity of the predicate of the numeric column by varying the
size of the interval in the range predicate. Figure 11 and Figure 12
study the variation in absolute and relative errors respectively, as
the size of the interval being queried changes. The fractional inter-
val width, i.e. the ratio of the size of the interval being queried to
the entire domain of the column, is plotted on thex axis while the
error is plotted on they axis. The absolute error in Figure 11 does
not vary much with the interval width. However the relative error
in Figure 12 increases as the interval width decreases. Boththe ab-
solute and relative errors decrease as the number of rows available
for reconstruction increases.

7.3 Privacy Breach Guarantees
We study privacy breaches possible after perturbation on the

Adult dataset. Figure 13 and Figure 14 show the maximum re-
tention probability that avoids breaches for varying values ofρ1 for
fixed ρ2 = 0.95, according to Theorem 5. To compute the val-
ues ofs for sample predicates (subsets) of this dataset, we divide
each column into 10 equiwidth intervals and consider predicates
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Figure 14: Privacy for three columns for Adult data.

that are subsets formed by the cross product of the intervals. Thus
for two columns we consider 102 subsets and for three columns we
consider 103 subsets. The maximum values ofs were observed to
be 15 and 30 for two and three columns respectively. The median
value of s has been shown to be one in Theorem 3. The two fig-
ures plot the maximum retention probability,p, that would avoid a
(s, ρ1, ρ2) breach, on they axis against the a priori probability,ρ1,
on thex axis for different values of relative a priori probability,s.
The values ofsused are the maximum value ofs, the median value
s= 1, ands= 0.1 for a rare set. Both figures show that if it suffices
to just hide rare properties (i.e., withs ≤ 0.1), then forρ1 > 0.5,
the retention probabilityp can be as high as 0.8. If we need to
hide all the above properties, i.e. even for the largests (the most
common property), then forρ1 > 0.5 the retention probability can
be selected to be as high asp = 0.3. For p = 0.3 both Figure 4 and
Figure 5 show low reconstruction error. Thus reconstructability of
2 and 3 aggregates together, and privacy of data elements, are both
achieved by perturbation for the Adult dataset, withp = 0.3. Thus
our experiments indicate (s, ρ1, ρ2)-privacy as well as multi-column
aggregate reconstructability.

8. SUMMARY AND FUTURE WORK
The contributions of the paper are:
• We introduce the problem of privacy preserving OLAP in a dis-

tributed environment.
• We introduce the formalism for reconstructible functions on a

perturbed table, and develop algorithms to reconstruct multiple
columns together. We provide privacy guarantees that take into
account correlations between any combination of categorical
and numeric columns.
• We provide two reconstruction algorithms to work with reten-

tion replacement perturbation: an iterative Bayesian algorithm,
and a matrix inversion algorithm that also yields the maximum
likelihood estimator. These algorithms can reconstruct count
aggregates over subcubes without assuming independence be-
tween columns.
• We evaluate proposed reconstruction algorithms both analyt-

ically and empirically. We study the privacy guarantees we
get for different levels of reconstruction accuracy and show the
practicality of our techniques.
• We show the use of our techniques to related applications like

classification.
Future work includes extending this work to other aggregates

over subcubes.
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10. APPENDIX
Theorem 1. Let the fraction of rows in [low,high] in the origi-

nal table,f be estimated byf
′

, then f
′

is a (n, ǫ, δ) estimator forf
if n ≥ 4 log(2

δ
)(pǫ)−2

PROOF: Let Yi be the indicator variable for the event that thei th

row (1 ≤ i ≤ n) is perturbed and the perturbed value falls within
[low,high]. Yi are i.i.d. with Pr[Yi = 1] = (1 − p)b = q
(say), Pr[Yi = 0] = 1 − q. Let Xi be the indicator variable
for the event that thei th row is not perturbed and it falls within
[low,high]. Once againXi are i.i.d. withPr[Xi = 1] = p f = r
(say), Pr[Xi = 0] = 1 − r. Let Zi be the indicator variable for
the event that thei th randomized row falls in [low,high]. We have

Zi = Xi+Yi , andPr[Zi = 1] = q+r = t (say), andPr[Zi = 0] = 1−t.
Let Z =

∑n
i=1 Zi = nr , the number of randomized values in range

[low,high]. SinceZi ’s are independent Bernoulli random variables,
0 ≤ t ≤ 1 andn ≥ 4 log(2

δ
)(pǫ)−2 × t, applying Chernoff bounds[7]

we get

Pr[|Z − nt| > ntθ] < 2e
−ntθ2

4 ≤ δ f or θ =
pǫ
t

Thus with probability> 1−δ, we have−npǫ < Z−nt = nr −n(p f+
(1− p)b) < npǫ, which implies

f − ǫ <
nr

pn
−

(1− p)(high− low)
p(max−min)

< f + ǫ

Hence| f − f
′

| < ǫ with probability> 1− δ.

Theorem 2. The vectorx calculated asA−1y is the maximum
likelihood estimator (MLE) of the relaxed a priori distribution 2 on
the states that generated the perturbed table.
PROOF: Let V = (v1, v2, v3, ....vn) be the observed state values
for the n perturbed rows inT

′

. Let t = 2k − 1. Note that
vi ∈ {0,1,2, ...., t} for all i ∈ [1..n]. If L(x) is the likelihood of
the observations,V, given a probability distribution on the states,
x, in the original data, thenL(x) = Pr(V|x) =

∏n
i=1 Pr(vi |x) =

∏n
i=1(

1
n

∑t
j=0 ajvi xj) =

∏t
i=0(

1
n

∑t
j=0 aji xj )yi (reordering according to

the values ofvi .) Maximizing L(x) is equivalent to maximizing
log(L(x)).

max log(L(x)) =
t
∑

i=0

(yi × log(
1
n

t
∑

j=0

xj aji ))

subject to the constraint
∑t

j=0 xj = n.
This is equivalent to

max
x

min
λ

l(x, λ) =
t
∑

i=0

(yi log(
1
n

t
∑

j=0

xj aji )) − λ(
t
∑

j=0

xj − n)

whereλ is the Lagrangian multiplier.
If
∑t

j=0 xj−n > 0 then settingλ to arbitrarily large positive value,
you can minimize the term−λ(

∑t
j=0 xj − n) to an arbitrarily small

negative number, similarly when
∑t

j=0 xj − n < 0, asλ tends to−∞
the term becomes arbitrarily small. So the optimum ensures that
the constraint

∑t
j=0 xj = n is satisfied.

To maximize the expression, setting the partial derivatives to be
zero we get,

∂l
∂xs
=

t
∑

i=0

yi
asi

∑t
j=0 xjaji

− λ = 0 ∀0 ≤ s≤ t

and ∂l
∂λ
=

∑t
j=0 xj − n = 0.

Matrix A is stochastic, i.e.
∑t

i=0 asi = 1 ∀0 ≤ s ≤ t, as they
are probabilities of transition out of a state. Consider therow
vector, x = yA−1 calculated by the algorithm. For this vectorx,
∑t

j=0 xjaji = yi . Hence substituting above,∂l
∂xs
=

∑t
i=0 yi

asi
yi
− λ =

∑t
i=0 asi − λ = 1− λ
Also

∑t
j=0 yj =

∑t
j=0

∑t
i=0 xiai j =

∑t
i=0

∑t
j=0 xiai j

=

∑t
i=0 xi

∑t
j=0 ai j =

∑t
i=0 xi . As

∑t
j=0 yj = n we have

∑t
i=0 xi = n,

satisfying ∂l
∂λ
= 0.

Thus atx, given byx = yA−1, andλ = 1 we get a local maximum
of l(x, λ). We show that the local maximum is the global maximum,

2i.e.
∑

i xi = n and 0≤ xi ≤ n are the exact constraints, the relaxed
constraint only ensures

∑

i xi = n



by analyzing the Hessian matrix,H, of l(x, λ) and showingxT Hx ≤
0, for all x ∈ Rt. Elements of H are given by,

hsi =
∂l
∂xs∂xi

= −

m
∑

h=1

yh
aihash

(
∑t

j=0 xjajh)2
∀0 ≤ s, i ≤ m

.

xT Hx =

t
∑

i=0

t
∑

s=0

hsixsxi

=

t
∑

i=0

t
∑

s=0

−

t
∑

h=0

yh
aihash

(
∑t

j=0 xjajh)2
xsxi

= −

t
∑

i=0

t
∑

s=0

t
∑

h=0

φhaihashxi xs

where
φh =

yh

(
∑t

j=0 xjajh)2
≥ 0

Thus

xT Hx = −

t
∑

h=0

φh

t
∑

i=0

t
∑

s=0

aihashxi xs

= −

t
∑

h=0

φh

t
∑

i=0

aih xi (
t
∑

s=0

ashxs)

= −

t
∑

h=0

φh(
t
∑

s=0

ashxs)
t
∑

i=0

aihxi

= −

t
∑

h=0

φh(
t
∑

s=0

ashxs)(
t
∑

i=0

aihxi )

= −

t
∑

h=0

φh(
t
∑

i=0

aih xi )2 ≤ 0

Theorem 3. The median value of relative a priori probability,
over all subsetsS, S ⊆ VX, is 1.
PROOF: Consider, any subsetS ⊆ VX, andS = VX − S. Using
notation as in Definition 5 we haveps + ps = 1 andms +ms = 1.
Hence if ps/ms ≥ 1 , we have ps/ms ≤ 1 and if ps/ms < 1 we
haveps/ms > 1 Since this is true for any pair of complementary
subsets, among all subsets ofVX, half the subsets have relative a
priori probability≥ 1 and half≤ 1. Hence the median value ofs
over all subsets ofVX will be 1, if the median is not constrained to
be one of the values attained.

Theorem 4. Let p be the probability of retention, then uniform
perturbation applied to a single column is secure against a (s, ρ1, ρ2)
breach, if

s<
(ρ2 − ρ1)(1− p)

(1− ρ2)p

PROOF: Let S ⊆ VX with P[S] = ps according to the a priori
distribution andP[S] = ms according to the replacing p.d.f. LetX
andY denote the random variables for the original and perturbed
value respectively. LetR denote the event thatX was replaced and
Rc it being retained. For a (ρ1, ρ2) privacy breach with respect toS
we needP[X ∈ S] ≤ ρ1. Also P[(X ∈ S)|(Y ∈ S)]

=

P[(X ∈ S) ∩ (Y ∈ S) ∩ R] + P[(X ∈ S) ∩ (Y ∈ S) ∩ Rc]
P[Y ∈ S]

≤
ρ1(1− p)ms + pps

(1− p)ms + pps

This is becauseP[(X ∈ S) ∩ (Y ∈ S) ∩ R] = P[X ∈ S]P[Y ∈
S|R]P[R] ≤ ρ1(1− p)ms andP[(X ∈ S) ∩ (Y ∈ S) ∩ Rc] = P[(X ∈
S) ∩Rc] = pps. Thus ifP[X ∈ S|Y ∈ S] ≥ ρ2,

ρ1(1− p)ms + pps

(1− p)ms + pps
≥ ρ2

Hence for a (ρ1, ρ2) privacy breach with respect toS, we need

ps

ms
≥

(ρ2 − ρ1)(1− p)
(1− ρ2)p

Theorem 5. There will not be a (ρ1, ρ2) privacy breach for (S1×

S2 × . . .Sk) = S ⊆ D, if

ps

ms
<

ρ2(1− ρ1)(1− p)k

(1− ρ2)
∏k

i=1((1− p)mSi + p)

PROOF: Let X = (X1,X2, ...,Xk) be the random variable corre-
sponding to the original value of thek column row from the a priori
distribution on tableT, andY = (Y1,Y2, ....Yk) that corresponding to
the perturbed row, where each column is perturbed independently
by a retention replacement perturbation. ForAi , Bi ⊆ Di we have
P[Yi ∈ Bi |Xi ∈ Ai ] = (1 − p)mBi + p

pAi∩Bi
pAi

, for 1 ≤ i ≤ k. Thus

(1 − p)mBi ≤ P[Yi ∈ Bi |Xi ∈ Ai] ≤ (1 − p)mBi + p. Thus for
A, B ⊆ D we haveLB (say)=

∏k
i=1(1− p)mBi ≤ P[Y ∈ B|X ∈ A] ≤

∏k
i=1((1− p)mBi + p) = UB (say).P[(X ∈ S)|(Y ∈ S)] =

P[(Y ∈ S)|(X ∈ S)]P[X ∈ S]
P[(Y ∈ S)|(X ∈ S)]P[X ∈ S] + P[(Y ∈ S)|¬(X ∈ S)]P[¬(X ∈ S)]

≤
US ps

US ps + LS(1− ps)

Suppose there is a (ρ1, ρ2) privacy breach with respect toS, we
needP[X ∈ S] ≤ ρ1, andP[(X ∈ S)|(Y ∈ S)] ≥ ρ2 Thus

US ps

US ps + LS(1− ps)
≥ ρ2

This implies

ps

LS(1− ps)
≥

ρ2

US(1− ρ2)

Substituting values ofUS, LS and noting thatps ≤ ρ1 hence 1−ps ≥

1− ρ1, we get

ps
∏k

i=1 mSi

≥
ρ2(1− ρ1)(1− p)k

(1− ρ2)
∏k

i=1((1− p)mSi + p)


