
A Framework for Expressing and Combining Preferences

Rakesh Agrawal Edward L. Wimmers

I B M A l m a d e n R e s e a r c h C e n t e r

S a n J o s e , C A 95120

A b s t r a c t

The advent of the World Wide Web has created an explosion
in the available on-line information. As the range of
potential choices expand, the time and effort required to sort
through them also expands. We propose a formal framework
for expressing and combining user preferences to address this
problem. Preferences can be used to focus search queries
and to order the search results. A preference is expressed
by the user for an entity which is described by a set of
named fields; each field can take on values from a certain
type. The * symbol may be used to match any element of
that type. A set of preferences can be combined using a
generic combine operator which is instantiated with a value
function, thus providing a great deal of flexibility. Same
preferences can be combined in more than one way and a
combination of preferences yields another preference thus
providing the closure property. We demonstrate the power
of our framework by illustrating how a currently popular
personalization system and a real-life application can be
realized as special cases of our framework. We also discuss
implementation of the framework in a relational setting.

1 I n t r o d u c t i o n

The World Wide Web is suffering f rom abundance.
The publicly indexsble web contains an est imated
800 million pages [LG99]. The number of pages is
anticipated to expand 1000% over the next few years
[BP96]. The current on-line catalog of Amazon.com
contains more than 3 million books, 225,000 CDs,
60,000 Videos, and other merchandise. The auctioning
site eBay has on-line information on more than 3
million i tems on sale at any time. The emergence of
industry-specific exchanges such as Sciquest, Chemdex,
Chipcenter, etc. will cause the amount of on-line
information about product and services to further

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to repubtish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ACM SIGMOD 2000 5/00 Dallas, TX, USA
© 2000 ACM 1-58113-218-210010005- .$5.00

explode.
As the range of potential choices expand, the time

and effort required to sor t through them also expands.
These problems are difficult enough when a person
is actively searching for a product to meet a specific
need. The problem becomes even more severe when
people are browsing. The effort required to browse
through thousands, if not millions, of product variants
within specific categories becomes like searching for the
proverbial needle in a haystack [HS991. The importance
and potential commercial impact of managing this
data so that users can quickly and flexibly state
their preferences represents an important new potential
direction for database technology.

We propose a framework for expressing and combin-
ing user preferences to address the above problem. Pref-
erences can be used to focus search queries and to order
the search results. While the Web applications moti-
vated our work, the framework is more generally appli-
cable.

The salient features of our framework are:

A user expresses preference for an entity by provid-
ing a numeric score between 0 and 11, or vetoing it,
or explicitly stating indifference. By default, indif-
ference is assumed. Thus, a user states preference
for only those entities that the user cares about.

An entity is described by a set of named fields; each
field can take on values from a certain type. The *
symbol may be used to match any element of that
type. For example, (painting, cubist, *) refers to
any cubist painting, (painting, *, Picasso) refers to
paintings of Picasso, and (*, *, Picasso) refers to any
artwork of Picasso.

Preferences can be combined. There is one generic
combine operation for this purpose. This operator
is instantiated by value functions to yield specific
instances of the combine operation. Having a single

iExtension to the case where the scores are discretized and
assigned symbolic labels is straightforward.

297

generic combine operation makes for a lean and easy
to understand and implement system. Allowing
value functions provides a great deal of flexibility.

• Specification of preferences is decoupled from how
they are combined. The same preferences may
be combined in different ways depending upon the
application.

• Autonomy of various preferences is preserved. Pref-
erence for an entity can be changed without affecting
any score of an unrelated entity.

• The combining operation has the closure property
so that the result of combining two preferences may
be further combined with another preference.

To illustrate the flexibility of our framework, we take
a current popular personalization system and a real-life
application and show how they can be modeled within
our framework. We also sketch how to implement our
framework in a relational setting.

R e l a t e d W o r k The problem of expressing and com-
bining preferences arises in several applications. Cus-
tomization by selecting from a menu of choices (e.g.
ticker symbols for tracking stocks, city names for
weather forecast) can be thought of as a simple expres-
sion of preferences. Terns expressions used for filtering
documents (e.g. myexcite) can also be viewed as sim-
ple form of preferences. The recommendation systems
based on collaborative filtering [RV97] ask users to rank
items and combine preferences of similar users to make
recommendations. The need for combining rankings
of different models has arisen in meta-search problems
[EHJ+96] [FISS98], multi-media systems [Fag98], and
information retrieval [SM83]. Perhaps the most famous
theorem related to combining preferences is the Arrow
Impossibility Theorem in Economics [ArrS0]. The the-
orem says that it is impossible to construct a "social
preference function" (ranking the desirability of various
social arrangements) out of individual preferences while
retaining a particular set of features.

While related, the main thrust of our work is
quite orthogonal to the above literature. Our main
concern is to develop a flexible framework for expressing
and combining preferences that has certain desirable
properties. The specific function used in combining
some preferences is a parameter in our framework; we
only require that this function obey certain constraints.
(Arrow's social preference function does not obey these
constraints.)

P a p e r O r g a n i z a t i o n The rest of the paper is struc-
tured as follows. In Section 2, we present our preference
framework. We formally define preference functions and

how they are combined. We introduce modular com-
bining forms that have the desirable properties of ef-
ficiency and conservation of the autonomy of various
preferences. Modular combining forms are closed under
composition. We show that all the preference combing
forms defined using our framework are indeed modular.

In Section 3, we model the Personalogic system
(http://www.personalogic.com) using our framework.
In this case study, we combine several preference
functions from the same person that cover different
aspects of a total picture. We also model a real-life
design application in which a company's preferences are
combined with an engineer's preferences into a single
preference function. We then present a completeness
result that explains the power of our framework.

In Section 4, we sketch how our preference system
can be implemented on a relational database system.
We conclude with a summary in Section 5.

In this paper, we assume that the user explicitly
provides preferences. It is easy to extrapolate how
such a system can be used in conjunction with a data
mining system that observes a user's past interactions
and offers suggestions for preferences.

2 T h e F r a m e w o r k

2.1 P r e f e r e n c e Functions
In this section, we formalize the notion of a preference
function.

We start with a set of (base) types which typically
include ints, strings, floats, booleans, etc.

We introduce a data type called score that represents
a user preference. Formally, this is [0,1] U { ~, _1_). A
score of 1 indicates the highest level of user preference.
A score of 0 indicates the lowest level of user preference.
The "~" score, represents a veto. The "±" score
represents that no user preference has been indicated.

We also make use of record types. Since it is an
important building block of preference functions, it
is worth briefly reviewing. A record type is a set of
pairs { name_l:type_l, . . . , name_n:type_n } in which
all n names (a name is simply a non-empty string)
are different (although the types are allowed to be the
same). In this case, name5 is the name of a field in
the record and type_i is the type of that field. A record
is where each field takes on a value in the type of that
field. More formally, a record is a function r whose
domain is { name_l , . . . , name_n) such that r(name._i)
is an element of type_i. Usually, r(name_i) is written as
r.name_i.

A type is called wild iff it contains "*". The "*"
symbol is used to indicate a wild card that "matches"
any value.

Defini t ion 2.1 A preference function is a function
that maps records of a 9ires record type to a score. I f p

298

is a preference function, we use dora(p) to refer to the
given record type that is the domain of p.

Since we sometimes wish to apply a preference
function to a record with more fields than are present
in the domain of the preference function, we introduce
a projection operator to eliminate the extra fields. This
is formalized in Definition 2.2.

Definit ion 2.2 Let rt be the record type {at : t l , . . . , nk :
tk) . Let r be a record of type {nl : Q , . . . , n h : t~,nk+l :
t k+ l , . . . a t : tl} where k < l. Then rrrt(r) is the record
of type rt where Irrt(r).ni = r.ni for i < k.

While a preference function does not require that the
types of fields in the record type that is the domain of
a preference function be wild, most of the time these
fields will be wild so as to allow the user a convenient
method for specifying a whole class of preferences.

Definit ion 2.3 Given two records rl, r~ of type rt =
{nl : t l , . . . , n ~ : t~}, we say r2 generalizes rl (which is
written as r 2 ~ r l) iff for all i _< k, either rz.ni = rl.ni
Or r2 .n i = *.

It is clear that the t> relation is reflexive and
transitive. Note that for any record r there are 2J
records that generalize r where j is the number of fields
that have a wild type and for which the value of the
field in r is not "*"

2.2 C o m b i n i n g P r e f e r e n c e F u n c t i o n s

It is frequently desirable to combine preference func-
tions to form a new preference function. We define a
preference function meta-combining form called com-
bine which takes a "value function" that says how to
compute a new score based on the original scores and
produces a preference function combining form (which
takes a finite list of preference functions and produces
the new preference function). Imagine two roommates,
Alice (who never cooks but likes to decorate) and Betty
(who does all the cooking) are purchasing a refrigera-
tor. Alice has a preference function (called A0) whose
domain is {model : in,, color : string U {*}}; Betty
has a preference function (called Bo) whose domain is
{model : in,, quality : in ,) . The model field indicates
the model number, the color field is a string describing
the color, and quality is an integer between 1 and 4 indi-
cating the quality of the refrigerator. Notice that color
is the only field with a wild type. The two roommates
agree that the combined preference function should be
what Betty wants (since she does all the cooking) but
that Alice should have veto power over any refrigera-
tor they buy. In this subsection, we define a preference
function combining form and show how this roommate
example can be expressed using this preference function
combining form.

We assume the existence of a special character "~"
that is reserved for system use and is not allowed to
appear in the name of any (user) record field.

Definit ion 2.4 Given a record type, rt = {nl :
t l , . . . , n k : t k } ,
define ScoreBoard(r ,) = : scorel(t , is wild ^

= "s ta r ! ") v = r i d .

Notice that we are using the special character "!" both
as a separator character as well as at the end of the
"star!" string to avoid conflict with the name of a user
field (which is not allowed to contain the "!" charac-
ter). Thus, ScoreBoard(r,) has 2 j fields where j is the
number of ti types that are wild. The careful reader
will note that the record type is a set which is un-
ordered whereas the new field names have an order
(namely n~ occurs before n~, etc.). This gap is easy to
remedy by simply taking the names in the new record
field to be listed in alphabetical order. In the room-
mate example, ScoreBoard(dom(Ao)) = {color!model:
score, star!!model : score} and ScoreBoard(dom(Bo)) =
{model!quality : score}.

Definit ion 2.5 Given a record type rt = {nl :
ti nk : tk}
and the name of a field n~!.. .!n~ in record type
ScoreBoard(r,),
and a record r of type rt,
define RecordOf r,(r, n~ ! . . .!n~) to be a record o/type rt
such that, for each field name nj in rt,

{ r.nj i f n ~ : n j
RecordOf r,(r, n~ !...!n~).nj = • if n~ = star/

Notice that RecordOfr t completely specifies the record
since a value is supplied for every field in the record of
type ft. Also note that n~ can be "star!" only if tj
is wild so that the nj field in the record RecordOf~t is
always a valid member of type t j . For example, in the
roommate example, RecordOf do,n(A o) (r, star!! model) =
{color = *, model = r.model}. (Note that we use the
sign (rather than :) when giving a specific instance of
a record.) It is clear that, when applied to a record of
type r t , RecordOfrt produces a generalization of that
record.

Definit ion 2.6 Given a preference function p whose
domain is the record type r t = {nl : t l , . . . , n / ¢ : t / c } ,

and a record r of type rt,
define Scores(p, r) to be a record of type ScoreBoard(rt)
such that Scores(p, r) .n~! . . . !n~ =
p(RecordO/ ,t (r, n~ ! . . .! n~)) .

The basic idea is that Scores(p, r) provides the value of
p(r ') for all the generalizations r ' o f t when the type o f t
is dora(p). Clearly, Scores(p, r) : ScoreBoard(dora(p))
provided r is of type dora(p). In the roommate exam-
ple, Scores(Ao, r) =

299

(s tar! !model = Ao((color = *, model = r .mode l}),
color!model = Ao((color = r.color , model = r .mode l}) }.
In the case that n~ = ni for each i (i.e., none of the n~
are "star!"), note that
Scores(Ao, r) .n l ! .. .!nk = A0(r).

D e f i n i t i o n 2.7 A finite set o f record types { r t l , . . . , r t n) (
is compatible i f f whenever rt i and r t j share a field with
the same name, then those two fields have the same
type.

I f (r t i , . . . , rt,~} is compatible, define m e r g e (r t i ,rt,~))
to be the record type that has a field n : t i f f at least one
o f the record types has the field n : t.

Note that , by compatibility, each field in the merged
record type will have a uniquely determined type.
In other words, m e r g e (r t i , . . . , r t , ~) is the "smallest"
record type that "contains" all of the record types
r t i , . . . , r t n . Also note that the order of the argu-
ments to m e r g e is irrelevant. In the roommate ex-
ample, dom(Ao) and dom(Bo) are compatible types
and m e r g e (dom(Ao), dom(Bo)) = (m o d e l : int , co lor :
s t r ing U (*}, qual i ty : in t } .

D e f i n i t i o n 2.8 For every set (r t i , . . . , r~n]- of compat-
ible record types, C is called a preference combining
form based on (r t i , . . . , r t n) i f f C maps n preference
func t ions pi , . . . , pn with dom(pi) = rt l into a new pref-
erence func t ion with domain m e r g e (r t l , . . . , r tn) . This
new preference func t ion is denoted by C (p l , . . . ,Pn).

D e f i n i t i o n 2.9 Let (r t i , . . . , r t n } be a set o f compati-
ble record types. A funct ion f is called a value function
based on (r t i , . . . , r t n) i f f f : ScoreBoard(r t l) × . . . ×
ScoreBoard(r tn) × m e r g e (r t l , . . ., rtn) ~ score.

We are now ready to define the meta-combining
form combine which is at the heart of the combining
preference functions.

D e f i n l t l o n 2.10 Let (r t l , . . . , r t n } be a set o f com-
patible types. Let f be a value funct ion based on
(r t i , . . . , r t , ~) . Then combine (f) is preference combin-
ing f o r m based on (r t l , . . . , r tn) defined by

= f(Scores(pl, (r)) , . . . , Scores(p , r)
for all records r o f type m e r g e (r Q , . . . , r tn)
and all preference func t ions with dom(pi) = rt i for all
i < n .

The idea behind this notion of combining preference
functions is that only the "relevant" scores are exam-
ined. The relevant scores are the scores associated with .[
a record as well as any generalizations of that record.
All the other values are irrelevant.

Notice that a value function is based on a list (rather
than a set) of record types since the order of the
arguments to a value function might make a difference. }

In the roommate example, the computat ion that
gives Alice veto power would be the function FirstVeto
defined as follows:
FirstVeto(a : ScoreBoard(dom(A0)) ,

b : ScoreBoard(domB0),
c : m e r g e (d o m (A o) , d o m (B o))) returns score

if a.color!model = ~ then return ~;
else if a.star!!model = ~ then return ~;
else return b.model!quality;

The preference function comb ine (F i r s tVe to) (Ao , Bo)
would be the desired combined preference function. If
Alice can't stand a particular refrigerator, then she
would veto it and the result would be a veto. If
Alice chooses not to veto a particular refrigerator, then
Betty's preference would be the one that is returned.

For example, assume Alice hated all the model 123
refrigerators and the green refrigerator in model 234;
if she had no preference among the other refrigerators,
then her preference function A0 would be:

Ao((color = *, model = 123}) =
Ao((co lor = green, model = 234)) =
A0(r) = ± for all other records r.

Let's look at a particular example in which Alice's
veto prevails. Let r i = (color = p u r p l e , m o d e l =
123, qual i ty = 2}.

combine(firstVeto)(Ao, Bo)(rl)
= Firs tVe to (Scores (Ao , r l) , Scores(Bo, r l) , r l)
= Firs tVe to((co lor !model = l , s tar!!model = ~),

(model!quality = Bo(rl)), rl)
=

Let's look at a particular example in which Betty 's
preference prevails. Let r2 = (color = purple , model =
234, qual i ty = 2}.

combine(f i r s t Veto)(Ao , Bo)(r~)
= firstVeto(Scores(Ao, Scores(Bo,
= Firs tVe to((co lor !model = .L, s tar!!model = .L},

(mode l !qua l i t y = B0(r~)}, r~)
= B0(r2)

In the roommate example, note that the final argu-
ment to Firs tVeto is ignored. A variation on the exam-
ple would be that Alice can not veto a refrigerator with
a quality rating of at least 3. In this case, the definition
of Firs tVeto would change to:
FirstVetoSometimes(a : ScoreBoard(dora(A0)) ,

b : ScoreBoard(domB0),
c : m e r g e (d o m (A o) , d o m (B o))) returns score

if c.quality _> 3 then return b.model!quality;
else if a.color!model = ~ then return ~;
else if a.star!!model = ~ then return h;
else return b.model!quality;

300

2.3 M o d u l a r C o m b i n i n g F o r m s

In this section, we formalize and study the notion of
the modular combining forms (see Definition 2.12).
Having modular combining forms has two desirable
results. The first desirable result is that autonomy
of various preferences is conserved. If a preference
function is created using only modular combining
forms, then a user may change a preference for a
particular record (in one of the original preference
functions) without affecting any preference (in the final
preference function) for any unrelated records. For
example, if Alice changes her perference towards yellow
refrigerators in model 123, this will have no affect on
the final preference for green refrigerators in model 123.
The second desirable result is that an implementation
need only provide first order value functions. The value
functions do not need to take entire preference functions
as arguments. Instead, they only require the finite
amount of information that is contained in a scoreboard.

Next we say when two preference functions are
equivalent with respect to a record in their domain.
The idea is that they agree on all the information that
is relevant to a record.

D e f i n i t i o n 2.11 Let p and p' be preference functions
with the same domain. Let r be a record of type dora(p).
We say p and p' are equivalent with respect to r iff

= p' for all r

We are now ready to define the modular combining
forms.

D e f i n l t l o n 2.12 A combining form C based on
(r t l , . . . , rtn) is modular iff

= provided that for
all i < n, Pi and p~ are equivalent with respect to r r t , (r) .

It is clear this definition captures the desired notion of
relevance. If a user changes their preference on a given
record r (thereby changin their preference function from
p to p'), it is clear that p and p~ are equivalent with
respect to any record which is not generalized by r.
The result of the new combined preference function will
agree with the old combined preference function on all
the records that are not generalized by r.

Modular combining forms enjoy the property of
being closed under composition. This is formalized in
Proposition 2.13 which, to enhance readability, is stated
only for binary combining forms.

P r o p o s i t i o n 2.13
Let {rtl , rt2, rt3, rt4} be a compatible set of record types.
Let C1, C2, and Cs be modular preference combining
forms based on (rtl, rt~), (rts, rt4), and
(merge(rQ , r~2), merge(re3, r~4)) respectively. Then
the combining form Co based on (rtt, rt2, rts,rt4) de-
y ned by Co(p , P2, p3, = P2), C2(p3, P4)) is
a modular combining form.

P r o o f i This is proven as Proposition 6.1 in Ap-
pendix A (Section 6). []

Now that we have seen that modular combining forms
are desirable to have around, Theorem 2.14 is important
because it guarentees that all the preference combining
forms defined using combine are modular.

T h e o r e m 2.14
I f f is a value function based on (rQ, . . . , r tn) , then
combine(f) is a modular combining form based on
(rtl, f t ,) .

P r o o f : This is proven as Theorem 6.2 in Appendix A
(Section 6). []

2.4 P r e f e r e n c e S y s t e m

D e f i n i t i o n 2.15 A basic •preference system is a collec-
tion of record types, and for each record type, a collec-
tion of preference functions with that domain (called the
available preference functions}, and a collection of value
functions (called the available value functions} each of
which is based on a finite collection of those record types.

A basic preference system is closed iff
combine(/)(p1,. . . , p,~) is an available preference func-
tion provided Pl , . . . ,Pn are available preference func-
tions and f is an available value function that is based
on {dora(p1) , . . . , dom(p~)}.

It is important to note that a basic preference
system need not make available all possible preference
functions. We expect that it will be the case that most
basic preference systems will be closed but to increase
flexibility, we do not require this. For example, a system
designer might put a sematic condition that a score for
any record be within ten percent of the score of any of its
generalizations. Since this might be a difficult condition
to enforce within the value functions, all the possible
value functions might be available even though the
combined preference function might not be available.
This system would, therefore, not be closed.

3 F l e x i b i l i t y

In this section, we discuss how flexible basic preference
systems are. We first model a single person system
in which several preference functions from the same
person that cover different aspects of a total picture
are combined. We use the popular Personalogic system
for this purpose. We then consider a multiple person
system in which preferences of two (or more) individuals
are combined into a single preference function. We
have already seen an instance of this in the roommate
example; we now model a real-life design application.
Finally, we present a completeness results that explains
the power of our framework.

301

3.1 Modeling Personalogic

The Personalogic system 2 is a popular system for
making selections and ordering results based on user
provided preferences. We sketch below how the
functionality provided by Personalogic can be realized
as a special case of our framework. We will use
Personalogic's decision guide for selecting a dog for
illustration.

The dog decision guide allows users to express pref-
erences for various attributes of different breeds of dogs
through a series of questions. These attributes include
size, indoor energy, exercise time, trainability, barking,
history of inflicting injuries, dog group, and coat char-
acteristics such as length, shedding, and hypoallerginic-
ity. The user can also specify the importance of indoor
energy, exercise time, trainability, and barking. The
values not selected for some of the attributes (size, dog
group, coat length) act as vetoes. For other attributes,
the user may indicate preference or no opinion. For
the history of inflicting injuries and hypoallerginicity
attributes, the user may also specify must not have val-
ues. The system computes a combined score for each
dog in the database based on the weightings of all the
individual preferences, provided that all the predicates
are satisfied, and returns results ordered by score.

The reader can immediately note that this system
is easy to model in our basic preference system. The
choices on individual attributes would be a preference
function on that attribute. A predicate could be
treated as a veto if the predicate is not satisfied. The
user controlled weighting could be modeled as a value
function.

The reader can also note that a system built on the
basic preference system would provide more flexibility
in allowing users to express preferences. For instance,
the user does not have the option of specifying prefer-
ence values for a combination of attributes in the Per-
sonalogic system. This can be important for a user
who wants to veto a combination of some specific val-
ues for different attributes while admitting those values
in other combinations.

3.2 Design Appl ica t ion

Design houses typically have component engineering de-
partments that are responsible for approving and rating
parts that are allowed to be used by design engineers in
the company products. Within the guidelines provided
by the component engineering, design engineers have
considerable flexibility in exercising their preferences.
We illustrate below how to model this common situa-
tion in our basic preference system so that searches over

2h'ttp://llnnz. persona.logic, com. Personalogic is now owned
by America Online (AOL) ~nd their customers include National
Geographic, American Express, and ~2"IYade.

part databases become cognizant of individual prefer-
ences.

A design house deals with three major product cat-
egories: inductors, capacitors, and resistors; these are
represented by a field called "Product". For each of
these categories, there are further subcategories; these
are represented by a field called "Subcatory". Manu-
facturers X, Y, and g supply all the three categories;
these are represented by a field call "Manufacturer".
The component engineering has forbidden the use of
all parts from Z. It has rated inductors from X as
superior (score = 0.8) and capacitors as good (score
= 0.6). On the other hand, the ratings for inductors
and capacitors from Y are good and superior respec-
tively. Component engineering has not yet rated re-
sistors. To save writing, we present the records as a
(Manufacturer,Product,Subcategory) list. The compo-
nent engineering expresses these preferences as follows:

Co(Z, , , ,) =
Go(X, inductors, ,) = 0.8
Co(X, capacitors, *) = 0.6
Co(Y, inductors, .) = 0.6
Co(Y, capacitors, ,) = 0.8

Engineer Elizabeth generally likes products from Y
better than products from X, except that she really
likes ceramic resistors built by X. She also thinks highly
of resistors made by g. She expresses her preferences
as follows:

s 0 (Y , , , ,) = 0.8
So(X, *, *) = 0.7
E0(X, capacitors, ceramic) = 1.0
Eo(Z, resistors, ,) = 0.9

By providing different combining forms, it is possible
to implement different policies that affect search results
in different ways. Note that neither component
engineering nor Elizabeth has to restate any of their
preferences. Example of policies include:

• Component engineering has priority. Elizabeth's
searches for inductors will resolve in favor of X,
searches for capacitors will resolve in favor of Y,
and searches for resistors will resolve in favor of Y.
The interesting case is the resistor case. Elizabeth's
preference for Z for resistor is vetoed because of
blanket ban on Z. However, since component
engineering has no preference between X and Y for
resistors, Elizabeth's general preference for Y over
X prevails.

• Engineer's preferences have priority unless vetoed by
component engineering. All of Elizabeth's searches
now resolve in favor of Y since she prefers Y over
X, except for ceramic capacitors for which she has
explicit higher preference for X. Her preference for
g for resistors has been vetoed by the component
engineering's veto on g.

302

As the time goes by, Elizabeth was able to convince
component engineering to loosen its ban on g for
resistors. However, component engineering still rates
resistors from Z, below than those from X. It can simply
add the following preferences:

C0(X, resistors, *) = 0.8
Co(Z, resistors, ,) = 0.6

No change is required in the combining forms. The
reader can easily verify that these .additions do not
affect the results of searches for inductors or capacitors.
Elizabeth's search for resistors now resolve in favor of
X under the first policy and in favor of Z under the
second.

3.3 C o m p l e t e n e s s off C o m b i n e O p e r a t o r

We have seen the tremendous flexibility of a basic
preference system. In fact, there is good reason for this.
The combine meta-combining form (Definition 2.10)
is complete in that all modular combining forms are
definable using combine!!!

This is formalized in Theorem 3.1.

T h e o r e m 3.1
Let C be a modular combing fo rm based on (r t l , . . . , rt,~) .
Then there is a value funct ion f based on (rtl , rtn)
such that C = c o m b i n e (f)

Proof : This is proven as Theorem 6.3 in Appendix A
(Section 6). []

PuttSng this result together with the fact that
combine(f) is always modular gives us the following
complete characterization of the modular combining
forms.

T h e o r e m 3.2 C is a modular combining f o r m based on
(r t l , . . . , rtn) i f f there exists a value funct ion f based on
(r t~ , . . . , rt~) such that C = combine(f) .

Proof i Follows from Theorems 2.14 and 3.1. []

4 I m p l e m e n t a t i o n o n a R e l a t i o n a l

D a t a b a s e S y s t e m

Let us consider the roommate example and see how
it might be represented using a relational database
system. The purpose of this example is to show how a
relationM database system could be used to implement a
basic preference system. There are many other possible
ways to implement a basic preference system and we
think there is a good bit of interesting research to be
done to take full advantage of a database system.

In one such implementation, Alice and Betty's prefer-
ence functions can be stored in separate tables. Records
with score of .L are not represented.

Alice's preference function:
I Color I Model II Score I

Red 123 0.4

Green 234
White 456 0.8
White 234 0.6
Betty's preference function:

Model Quality II Score I
123 3 0.7
123 4 0.9
234 4' 0.5
345 3 0.3
345 4 0.5
Here is how a system Would compute the combined

preference function defined by combine (Firs t Veto)(A o, Bo).
Given a record r, the system would perform the follow-
ing steps:

1. Form the ScoreBoard called sba for A0 as follows:

(a) Issue the query: SELECT Score FROM Alice
WHERE Color = r.color AND Model = r.model
Store the unique answer in sb_a.color!model (and
let this value be ..1_ if the query returns an empty
answer).

(b) Issue the query: SELECT Score FROM Alice
WHERE Color = * AND Model = r.model
Store the unique answer in sb~.star!!model (and
let this value be _l_ if the query returns an empty
answer).

2. Form the ScoreBoard called sbb for B0 as follows:

(a) Issue the query: SELECT Score FROM Betty
WHERE Model = r.model AND Quality =
r.quality
Store the unique answer in sb_b.model!quality
(and let this value be .L if the query returns an
empty answer).

3. Return the value obtained from the user-defined
function First Veto(sb~ , sbb, r)

The implementor might choose to materialize this
new preference function for retrieval efficiency. In this
example, we assume that there are four colors: Red,
Green, White, and Purple; we assume four models: 123,
234, 345, and 456; and we assume that there are four
quality levels: 1, 2, 3, and 4. Under these assumptions,
the combined preference function would look like the
following:

303

Color Model Quality I[Score

Red 123 1 I ~
Green 123 1 I ~
Purple 123 1
White 123 1
* 123 1
Red ~123 2
Green 1123 2
Purple i 123 2
White 123 2
* 123 2
Red I23 3
Green i23 3
Purple 123 3]~
White 123 3
* 123 3
Red 123 4 ~.
Green 123 4

P u r p l e 123 '4 ~
White 123 4 ~ . .
* 1 i 2 3 4 [~

Color I M0del I Q,uality II Score
i

Red i234 4 0.5
Green 1234 1
Green i234 2
Green ! 234' ' 3"
Green '234 4
Purple 234 4 0.5
White 234 4 0.5
* 234 4 0.5
Red 345 3 0 . 3
Green 345 3 i0.3
Purple 345 3 0.3
White 345 3 0.3
* 345 3 t0.3
Red 3~i5 4 I 0.5
Green 345 4 0.5
Purple 345 4 0.5
White 345 4 0.5
* 345 4 10.5

Of course, there is a lot of redundancy in the above
table. There are many interesting research questions
that merit further investigation such as: when to
materialize; how to have more compact representations
of the preference functions; what restrictions to put on
the available preference functions and available value
functions to permit an efficient implementation; etc.

5 S u m m a r y

We have presented a framework for expressing and
combining user preferences. The system is very lean
in that it only has two basic notions:

1. A preference function (Definition 2.1) that specifies
user preferences.

2. A single meta combining form combine (Defini-
tion 2.10) that is based on value functions (Defi-
nition 2.9).

Yet, in spite of its very lean nature, the framework
is very powerful. The single combine meta-function is
able (in conjunction with the value functions) to express
all modular preference combining forms (Theorem 3.1).

In addition to being quite powerful, the basic pref-
erence system is quite flexible since it does not require
the system to provide every possible preference func-
tion or every possible value function. Limits might be
placed to facilitate user interaction, impose semantic
conditions, or enable an efficient implementation. Fur-
thermore, there is flexibility in that the system does not
arbitrarily limit the possible value functions.

Fu tu r e Work Since this paper presents a framework,
there is a lot of work that can be done realizing this
framework. There is considerable room for system im-
plementors to address efficiency issues and experiment
with user interfaces. In fact, a generic user interface
could be built for a basic preference system that would
work with any preference system. Different represen-
tations of preference functions are possible. Another
important issue concerns value functions. We expect
the system to have a library of canned value functions
that should meet the needs of a large number of users.
But should value functions be definable by end users
and what would be a good interface?

R e f e r e n c e s

[Arr50] K.J. Arrow. A difficulty in the concept
of social welfare. J. of Political Economy,
58:328-346, 1950.

[BP96] John M. Berrie and David E. Presti. The
word wide web as an instructional tool.
Science, 274:371-372, 1996.

[EHJ+96] O. Etzioni, S. Hanks, T. Jiang, R.M. Karp,
O. Madani, and O. Waarts. Efficient infor-
mation gathering on the internet. In 37th
Annual Syrup. Foundations of Computer Sci-
ence, 1996.

[Fag98] Ronald Fagin. Fuzzy queries in multimedia
database systems. In 17th A CM Syrup.
Principles of Database Systems, June 1998.

[FISS98] Yoav Freund, Raj Iyer, Robert E. Schapire,
and Yoram Singer. An efficient boosting
algorithm for combining preferences. In
Machine Learning: 15th Int. Conf, 1998.

304

; " i . ¸ : : ~ , k

[HS99]

[LG99]

[RV97]

[SM831

John Hagel and Marc Singer. Net Worth.
Harvard Business School Press, 1999.

Steve Lawrence and C. Lee Giles. Acces-
sibility of information on the web. Nature,
400:107-109, 1999.

P. Resnick and H. Varian. Recommender
systems. Communications of the A CM,
40(3), 1997.

G. Salton and M. McGill. Introduction to
Modern Information Retrieval. McGraw-
Hill, New York, 1983.

6 A p p e n d i x A : M o d u l a r C o m b i n i n g

F o r m P r o o f s

P r o p o s i t i o n 6.1 (R e s t a t e m e n t o f P r o p o s i t i o n 2.13)
Let {rt l , rt2, rt3, rtd} be a compatible set of record types.
Let Ct, C2, and Ca be modular preference combining
forms based on (rQ, rtz), (rta, rta), and
(merge(rt,, rtz), merge(rt3, rtd)) respectively. Then
the combining form Co based on (rt~, rt~, rts, eta) de-
fined by C0(p~, p~, Ps, Pa) = Cz(Ct (p~, pz), Cz(pa, Pa)) is
a modular combining form.

Proof. . First note that it is clear that Co is based
on (rt t ,r t2,rts , rtd). .Let r be a record of type
merge(rtl ,rt2,rts ,rtd). Assume that pi and p~ are
equivalent with respect to Ir~t,(r) for i = 1 ,2 ,3 ,4
with the goal of showing that Co(p~,p2,pz,pd)(r) =

/ I I c0(p~, p~, p~, p~)(r).
First we show that C~(p,,p~) and C,(pt,p~) are

equivalent with respect to
Irmerg~(rtxxt~)(r). Let rtDTrrnerge(rtt,vt~)(r). Let r " Dr ' .
Then ~r , t , (r ") t> 7r, t , (C) I:> 7r r t , (vme,ge(r t , , r t ,) (r)) =
. . , , (r) . Thus, p~(. . , , (r")) = p;(~.t , (r")) since p,
and p~ are equivalent with respect to Irrt,(r). Thus,
Pt and p~ are equivalent with respect to C. Similarly,
P2 and p~ are equivalent with respect to C. Since, C1 is
modular, it follows that C1 (pl, p2)(r') = C1 (p~ , p~)(r').

! I This proves that C~(p~,p2) and CI(Pt,P2) are equiv-
alent with respect t o ~rmerge(rtx,r t2)(r) . Similarly,
C2(ps, p4) and C2(p~,p~) are equivalent with respect to
~'m~ge(~t~,¢t,) (r). Since Ca is a modular combining form
based on (merge(rQ, rt2), merge(rta, eta)),
it follows that Ca(C1 (pt, pz), C~(ps, pa))(r) =
Cs(C~ (p~, p~), C2(p~, p~))(r). This proves that

l I I I co(p~, p~, p~, p4)(r) = Co(p~, p~, p~, p~)(r)
as desired. []

Next we show that every combining form defined
using the combine operator is modular. This is
formalized in Theorem 2.14.

T h e o r e m 6.2 (R e s t a t e m e n t o f T h e o r e m 2.14)
If f is a value function based on (r t l , . . . , r t n) , then

combine(f) is a modular combining form based on
(r t ~ , . . . , r t ,) .

P r o o f : Let pl p,~ and p ~ , . . . , p ~ be preference
functions such that dora(p,) = rt, = dom(p~) for all i <
n. Let r be a record of type R T = merge(rQ, . . . , rtn~.
Let f be a value function based on (r t l , . . . , r t n) .
Assume that p, and p~ are equivalent with respect
to r t , for all i <_ n. The goal is to show that
c o m b i n e (f) (p ~ , . . . , p~) (r) = c o m b i n e (f) (p ~ , . . . , p ~) (r) .

Let no be an arbitrary name of a field in ScoreBoard(rt/).
Scores(p,, 7r,ti(r)).no

= p~(RecordOf , . t , (' r r , t , (r) , no))
= p ~ (n e c o r d O f , , , (~ , , , (r) , n o))

since RecordOf ,t, (~r,t,(r), no)) ~> r , , , (r)
= Sco~s(p~ , . .dr)) .no
Since the choice of no was an arbitrary name in

ScoreBoard(rt,), it follows that
Scores(p,, r , , , (r)) = S c o r e s (p ~ , ~r,,,(r)) for a l l , _< n.
We can compute as follows:

co~bine(f)(p~,. . . ,p~)(r)
= f (S c o r e s (p , , . . , , (r)) , . . . , Scores(p~,. . tAr)), r)
= f (Scores(p~,rrt , (r)) , . . . , Scores(p~,Trrt,(r)), r)
= combine(f)(p~,.. . ,p~)(r)

as desired. []
Now that we know that every combining form

combine(f) is modular, the next question to address
is are there any other modular combining forms other
than the ones definable by combine. It turns out the
answer is no. This means that every modular combining
form can be expressed using the combine operator. This
is formalized in Theorem 3.1.

T h e o r e m 6.3 (R e s t a t e m e n t o f T h e o r e m 3.1)
Let C be a modular combing form based on (rtl, . . . , rtn).
Then there is a value function f based on (r t l , . . . , rtn)
such that C = combine(f).

P r o o f : It is helpful to have a function NameOf
that takes a record of type r t for any type rt with
field names n l , . . . , n k and produces a name of a
field in ScoreBoard(rt) as follows: NameOf(ro) =
n~!. . . !n~ where n~ = ni if r0.n, ~ * and n~ =
star! if r0.n, = *. It is clear that if r0 t> r, then
R e c o , d O f ~ t , (r , N a m e O f (r o)) = t o .

First defined a set valued function
S: ScoreBoard(rti) x . . . x ScoreBoard(rtn)

x merae(r t l , . . . , r tn) --+ 9(score).
Recall that :P represents the power set operation so that
?~(score) is the set of all subsets of score. The definition
of S is as follows: Define so E S(sb l , . . . , sbn , r)
iff there exist preference functions P l , . . . ,P ,~ such
that C(pl , . . . ,pn) (r) = So and Vi < n(dom(p,) =
rt,&Scores(p,, rrrt,(r)) = sb,). It is clear that
C (p ~ , . . . , p ,) (r) e
S(Scores(p , , ¢r,t, (r)) , . . . , Scores(p,, ¢r,t.(r)), r).

305

Assume that So and s~ are elements o f S (s b l , . . . , sbn, r).
Hence, it follows that so = C (p l , . . . , p , ~) (r) , s~ =
C (p l , . . . , p~) (r) , and Vi < n(Scores (p , , rr~t,(r)) = sbi =
Scores (p i , ~rrt,(r)). Let ri t> ~'rt.(r).

p,(r~)
= p,(RecordO/,,,(~dr), N~eOf(r~))
= S c o r e s (p i , r r t , (r)) . N a m e O f (r ,)
= Scores(p~,~,, ,(r)) .NameO/(r,)

s i n c e S c o r e s (p , , ~ , , , (r)) =

Sco,es(p;, ~,,,(~))
= p;(RecordOf,,,(~r,,,(r), NameO.f(r,))
= p ; (r ,)

Hence, it follows that pi and p~ are equivalent with
respect to 7r~t,(r) for all i < n. Since C is a modular
combining form, it follows ~ a t
s0 = C (p l , . . . , p ,) (,) = C(pl , . . . , p ' ,) (,) = s~.
This proves that S (s b l , . . . , s b ~ , r) has at most one
element.

If S (s b l , . . . , sbn, r) is empty, then define
/ (s b l , . . . , s b ,~ , r) = . L ;

otherwise, define f (s b l , . . . , s b n , r) to be the unique
member of S (sbl , . . . , s b , , r).
Since C(pl,...,p,~)(r) e

S(Scores(p,, r r t , (r)) , . . . , Scores(p,, ~rrt,(r)), r),
it follows that C (p ~ , . . . , p n) (r)
= . f(Sco~s(p,, ~ , d ~)) , . . . , S¢ore~(p~, ~,~,(r)), ~).
By Definition 2.8, it follows that
c (p ~ , . . . , p ~) (r) = c o m b , , e (/) (p , , . . . , p ~) (~)

as desired. []

306

