Appears irProc. of the Fifth ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Midufg154, 1999.

Mining the Most Interesting Rules

Roberto J. Bayardo Jr. Rakesh Agrawal
IBM Almaden Research Center IBM Almaden Research Center
http://www.almaden.ibm.com/cs/people/bayardo/ http://www.almaden.ibm.com/u/ragrawal/
bayardo@alum.mit.edu ragrawal@acm.org
Abstract In the context of mining conjunctive association rules, we present

Several algorithms have been proposed for finding the “best,” “opti@" algorithm that can efficiently mine an optimal set according to
mal,” or “most interesting” rule(s) in a database according to a varithis partial order from a variety of real-world data-sets. For
ety of metrics including confidence, support, gain, chi-square@*@mple, for each of the categorical data-sets from the Irvine
value, gini, entropy gain, laplace, lift, and conviction. In this paperMachine leaming repository (excepting only connect-4), this
we show that the best rule according to any of these metrics mudlgorithm requires less than 30 seconds on a 400Mhz Pentium-l|
reside along a support/confidence border. Further, in the case Bf2SS machine. Specifying constraints such as minimum support or
conjunctive rule mining within categorical data, the number of rule§onfidence reduces execution time even further. While optimizing
along this border is conveniently small, and can be mined effidccording to only a single interestingness metric could sometimes
ciently from a variety of real-world data-sets. We also show how€duire less overhead, the approach we propose is likely to be
this concept can be generalized to mine all rules that are bedflvantageous since it supports an interactive phase in which the
according to any of these criteria with respect to an arbitrary subsBf€l can browse the optimal rule according to any of several
of the population of interest. We argue that by returning a broaddpterestingness metrics. It also _aIIows the_user to interactively twe_ak
set of rules than previous algorithms, our techniques allow foMinimums on support and confidence. Witnessing such effects with

improved insight into the data and support more user-interaction i tyPical optimized rule miner requires repeated mining runs, which
the optimized rule-mining process. may be impractical when the database is large.

. Another need for repeated invocations of an optimized rule miner
1. Introduction arises when the user needs to gain insight into a broader population
There are numerous proposals for mining rules from data. Some a¢an what is already well-characterized by previously discovered
constraint-based in that they mine every rule satisfying a set of hardrules. We show how our algorithm can be generalized to produce
constraints such as minimum support or confidence (e.g. [1,2,6]pvery rule that is optimal according to any of the previously
Others areheuristic in that they attempt to find rules that are mentioned interestingness metrics, and additionally, with respect to
predictive, but make no guarantees on the predictiveness or th@ arbitrary subset of the population of interest. Because data-
completeness of the returned rule set (e.g. decision tree amgining is iterative and discovery-driven, identifying several good
covering algorithms [9,15]). A third class of rule mining rules up-front in order to avoid repeatedly querying the database

algorithms, which are the subject of this paper, identify only theeduces total mining time when amortized over the entire process
most interesting, or optimal, rules according to some [13].

interestingness metric [12,18,20,24]. Optimized rule miners are o)
particularly useful in domains where a constraint-based rule mine2. Preliminaries

produces too many rules or requires too much time. 2.1 Generic Problem Statement

|t is dlfflCU't to come up with a single metric that quantifies theA data-set is a finite set ofecords. For the purpose of this paper, a
“interestingness” or “goodness” of a rule, and as a result, severgbcord is simply an element on which we apply boolean predicates
different metrics have been proposed and used. Among them aggjled conditions. A rule consists of two conditions called the
confidence and support [1], gain [12], variance and chi-squaregintecedent and consequent, and is denotell -asC where is
value [17,18], entropy gain [16,17], gini [16], laplace [9,24], lift the antecedentar@ the consequent. Aauretraint is a boolean

[14] (a.k.a. interest [8] or strength [10]), and conviction [8]. Severapredicate on a rule. Given a set of constralits , we say that a rule
algorithms are known to efficiently find the best rule (or a closer satisfies the constraints M if every constraintiin evaluates to
approximation to the best rule [16]) according to a specific one ofrye givenr . Some common examples of constraints are item
these metrics [12,18,20,24]. In this paper, we show that a single ygbnstraints [22] and minimums on support and confidence [1]. The

simple concept of rule goodness captures the best rules according#@ut to the problem of mining optimized rules is5a -tuple
any of them. This concept involves a partial order on rules definedqy, p, < , C, NOwhere:

in terms of both rule support and confidence. We demonstrate that . - L
the set of rules that are optimal according to this partial ordet Y IS @finite set of conditions;
includes all rules that are best according to any of the above D is a data-set;

metrics, even given arbitrary minimums on support and/or < is a total order on rules;

confidence. . C is a condition specifying the rule consequent;
« N is a set of constraints on rules.

When mining an optimal disjunction, we treat a set of conditions
AOU as a condition itself that evaluates to true if and only if one
or more of the conditions withiA evaluates to true on the given
record. When mining an optimal conjunction, we tréat as a
condition that evaluates to true if and only if every condition within
A evaluates to true on the given record. For both cases, if is
empty then it always evaluates to true. Algorithms for mining
optimal conjunctions and disjunctions differ significantly in their

http://www.almaden.ibm.com/cs/people/bayardo/
http://www.almaden.ibm.com/cs/people/ragrawal/

details, but the problem can be formaly stated in an identica
mannerl:

PROBLEM (OPTIMIZED RULE MINING): Findaset A; O U suchthat
(1) A, satisfiestheinput constraints, and
(2) thereexistsnoset A, 0 U suchthat A, satisfies the input
condtraintsand A; <A, .
Anyrule A - C whose antecedent isasolution to aninstance | of
the optimized rule mining problem is said to be | -optimal (or just
optimal if the instanceis clear from the context). For simplicity, we
sometimes treat rule antecedents (denoted with A and possibly
some subscript) and rules (denoted with r and possibly some
subscript) interchangeably since the consequent is always fixed
and clear from the context.

We now define the support and confidence values of rules. These
values are often used to define rule constraints by bounding them
above a pre-specified value known as minsup and minconf
respectively [1], and also to define total orders for optimization
[12,20]. The support of a condition A is equa to the number of
records in the data-set for which A evaluates to true, and this value
is denoted as sudA). The support of a rule A — C, denoted
similarly as sugA - C), is equal to the number of records in the
data-set for which both A and C evaluate to true.? The antecedent
support of a rule is the support of its antecedent alone. The
confidence of arule is the probability with which the consequent
evaluates to true given that the antecedent evaluates to true in the
input data-set, computed as follows:

conflA - C) = S‘—uglw

2.2 Previous Algorithms for the Optimized Rule
Mining Problem

Many previously proposed agorithms for optimized rule mining

solve specific restrictions of the optimized rule mining problem.

For example, Webb [24] provides an algorithm for mining an

optimized conjunction under the following restrictions:

« U contains an existence test for each attribute/value pair appear-
ing in a categorical data-set outside a designated class column;

« < orders rules according to their laplace value (defined later);

¢ N is empty.

Fukuda et al. [12] provide algorithms for mining an optimized dis-

junction where:

ordered or categorical domains;
« < orders rules according to antecedent support or confidence;

* N includes minimums on antecedent support or confidence, a
maximumk on the number of conditions allowed in the ante-
cedent of a rule, and a requirement that the hypercubes corre-
sponding to the conditions of a rule are non-overlapping.

In general, the optimized rule mining problem, whether
conjunctive or disjunctive, is NP-hard [17]. However, features of a
specific instance of this problem can often be exploited to achieve
tractability. For example, in [12], the geometry constraints are used
to develop low-order polynomial time algorithms. Even in cases
where tractability is not guaranteed, efficient mining in practice
has been demonstrated [18,20,24]. The theoretical contributions in
this paper are conjunction/disjunction neutral. However, we focus
on the conjunctive case in validating the practicality of these
results through empirical evaluation.

2.3 Mining Optimized Rules under Partial Orders

We have carefully phrased the optimized rule mining problem so
that it may accommodate a partial order in place of a total order.
With a partial order, because some rules may be incomparable,
there can be several equivalence classes containing optimal rules.
The previous problem statement requires an algorithm to identify
only a single rule from one of these equivalence classes. However,
in our application, we wish to mine at least one representative from
each equivalence class that contains an optimal rule. To do so, we
could simply modify the previous problem statement to find all
optimal rules instead of just one. However, in practice, the
equivalence classes of rules can be large, so this would be
unnecessarily inefficient. The next problem statement enforces our
requirements specifically:

PROBLEM (PARTIAL-ORDER OPTIMIZED RULE MINING): Find a set

O of subsets ofJ such that:

(1) every setA inO is optimal as defined by the optimized
rule mining problem.

(2) for every equivalence class of rules as defined by the partial
order, if the equivalence class contains an optimal rule, then
exactly one member of this equivalence class is within

We call a set of rules whose antecedents comprise a solution to an
instancel of this problem an-optimal set. Anl -optimal rule is
one that may appear in &n -optimal set.

2.4 Monotonicity

» U contains a membership test for each square of a grid formedThroughout this paper, we exploit (anti-)monotonicity properties

by discretizing two pre-specified numerical attributes of a data- of functions. A functionf(x)
set (a record is a member of a square if its attribute values fallmonotone) in x

within the respective ranges);

is said to be monotone (resp. anti-
if X, <x, implies thatf(x;) < f(x,) (resp.
f(x,) 2 f(x,)). For example, the confidence function, which is

» < orders rules according to either confidence, antecedent supdefined in terms of rule support and antecedent support, is anti-

port, or a notion they call gain (also defined later);

¢ N includes minimums on support or confidence, and includes
one of several possible “geometry constraints” that restrict the
allowed shape formed by the represented set of grid squares;

Rastogi and Shim [20] look at the problem of mining an optimized Consider the following partial ordes,

disjunction where:

« U includes a membership test for every possible hypercube®

monotone in antecedent support when rule support is held fixed.

3. SC-Optimality
3.1 Definition

on rules. Given rulgs
andr, ,ry <. r, ifandonly if:
sulr,) < sugr,) Oconf(r,) < conf(r,) , or

defined by a pre-specified set of record attributes with either ® SUR(r;) <sup(r,) Oconf(ry) < conf(r,) .

1 Algorithms for mining optimal disjunctions typically allow asingle fixed
conjunctive condition without complications, e.g. see[20]. Weignorethis
issue for simplicity of presentation.

2 Thisfollowstheoriginal definition of support asdefined in [1]. Thereader
iswarned that in the work of Fukudaet. al. [14] and Rastogi and Shim [20]
(who are careful to note the same discrepancy), the definition of support
corresponds to our notion of antecedent support.

Additionally, r; =, r, if and only if sugr,) = sudr,) and
conf(r,) = conf(r,) .

An | -optimal set wheré contains this partial order is depicted in
Figure 1. Intuitively, such a set of rules definessupport-
confidence border above which no rule that satisfies the input
constraints can fall.

border, metrics such as entropy gain, gini, and chi-squared value
A W sc-optimal rule are also included. But first, consider the following additional

B sc-optimal rule property of total orders implied by,

T . ______ m OBSERVATION 3.2: Given instancé = [U, D, <,,C,NO such that
R <, isimplied by<.. , andN contains a minimum support con-
: straint ng and/or a minimum confidence constraipt Jan -

No rules fall optimal rule is contained within any,, -optimal set where
outside these borders lSC = DJ! D! Ssc! C! N _{ nsv nc} } 0

The implication of this fact is that we can mine without minimum

support and confidence constraints, and the optimal rule given any

setting of these constraints will remain in the mined rule set. This

\ T L [] allows the user to witness the effects of modifying these

) non-optimal rulesfall within theseborders ;- -0 constraints without further mining of the data -- a useful fact since
Confidence .] the user often cannot determine accurate settings of minimum
I support or confidence apriori. Minimum support and confidence
: constraints are quite critical in some applications of optimized rule
' mining, particularly when the optimization metric is itself support
--0 or confidence as in [12] and [20].

: To identify the interestingness metrics that are impliecchy , we
! use the following lemma.

: LemMmA 3.3: The following conditions are sufficient for establish-
; ing that a total ordex, defined over a rule value funct{oh

. is implied by partial ordeg,

! (2) f(r) is monotone in support over rules with the same confi-

--0 dence, and

00/%7' > (2) f(r) is monotone in confidence over rules with the same

Support support.

Proof: Suppose r, <. r, , then consider a rule where
sugr,) = supr) andconfr,) = conf(r) . Note that by defini-
tionr; < .. r andr<, r, . Now, if atotal order has the mono-
tonicity properties from above, then<,r and,r, . Since
total orders are transitive, we then have thak, r, , Which
establishes the claint]

Figure 1. Upper and lower support-confidence borders.

Consider also the similar partial order <;_ . suchthat ry < . r, if
and only if:

* sur,) <sudr,) Oconf(r,) > conf(r,) , or

* sugr,) <sudr,) Oconf(r,) = conf(r,) . N o o
The equivalence condition is the same as before. An optimal set ofl "€S€ conditions frivially hold when the rule value function is

rules according to this partial order forms a lower border. sufr) or conf(r) . So consider next the Laplace function which is
. L commonly used to rank rules for classification purposes [9,24].
3.2 Theoretical Implications

In this section, we show that for many total ordsts intended to laplacgA — C) = SupA - C) +1
rank rules in order of interestingness, we have that sugA) +k

M <scfpU rysiry,andry = r, 0 ry =, r, . We say that any
such total ordek, ismplied by <. This property of a total order
is useful due to the following fact:

The constantk is an integer greater than 1 (usually set to the
number of classes when building a classification model). Note that
if confidence is held fixed to some valoe , then we can rewrite the

LEMMA 3.1: Given the problem instande= U, D, <,,C, NO Laplace value as below.

such thats, is implied b, , ah -optimal rule is contained

within any I, -optimal set wherg,, = [U,D, <., C,NO . laplacdr) = —SUHN +1
Proof: Consider any rule; thatis nbf, -optimal (for simplicity sufr)/c+k

we will ignore the presence of constraintdNn). Becayse i
non-optimal, there must exist some rule that is optimal suc
thatr, <. r, . But then we also have thgt<, r, sireg is
implied by <... This implies that any nd; -optimal rule is
either nont -optimal, or it is equivalent to sone -optimal rule
which resides in ahg, -optimal equivalence class. At least one

s, . . . L .
h It is straightforward to show that this expression is monotone in
rule support sinck>1 and=0 . The Laplace function is also
monotone in confidence among rules with equivalent support. To
see why, note that if support is held constant, in order to raise the
function value, we need to decrease the value of the denominator.
I -optimal equivalence class must therefore contaih an -opti- lSEpocrjterrvﬁgﬁ ir?%rlliegna{yla?geragck)];\?i\gaedncgy '\lrggeu%']';% a%ntC)ep():t?r?lglm
mal rule. Further, because, is impliedy, , every rule in t contains the optimized Laol le for . lid settiri of
this equivalence class must be -optimal. By definition,gn - set contains the optimized Laplace rule for any valid settirlg o

optimal set will contain one of these rules, and the claim fol- Th|§ means the user can W|tne§§ the effect of varking on the
lows. O optimal rule without additional mining of the database.

Put simply, mining the upper support/confidence border identifies gainA - C) = sufgA - C) -0 xsudA)
optimal rules according to several different interestingness metrlcs._l_he gain function of Fukuda et al. [12] is given above, wiiere is

\(i\(l)env\ilzl:ltlilor? h(|)i¥tv fg;ltaégesgai? e;rrl]c(:js z;rr:cLljuniearsggpi?ltfgr:stnm:;scuer’ea fractional constant between 0 and 1. If confidence is held fixed at
proposed by Piatetsky-Shapiro [19]. If we also mine the lower ¢, then this function is equal tsufr)(1-©/c) , which is

trivially monotone in support aslong as ¢ = © . We can ignore the
case where ¢ < © if we assume there exists any rule r satisfying
the input constraints such that conf(r) = © . Thisis because for any
pair of rules r; and r, suchthat conf{(r;) >© and conf(r,) <O,
we know that gain(r,) = gain(r,) irrespective of their support.
Should this assumption be false, the gain criteria is optimized by
any rule with zero support should one exist (e.g. in the conjunctive
case, one can simply add conditions to arule until its support drops
to zero).

The gain function is monotone in confidence among rules with
equivalent support for reasons similar to the case of the Laplace
function. If support is held constant, then an increase in gain
implies a decrease in the subtractive term. The subtractive term can
be decreased only by reducing antecedent support, which impliesa
larger confidence. Note that, like k from the Laplace function,
after identifying the optimal set of rules, the user can vary 6 and
view its effect on the optima rule without additional mining.
Another interestingness metric that is identical to gain for a fixed
value of ® = sugC)/|D| was introduced by Piatetsky-Shapiro
[19]:

_supgA)sugC)
D]

Consider next conviction [8], which was framed in [6] as a
function of confidence:

p'dA — C) = SUF(A — C)

|D| —sup(C)

conviction(A - C) = BI(1= conlA - O))

Conviction is obviously monotone in confidence since confidence
appears in a subtractive term within the denominator. It is aso
unaffected by variations in rule support if confidence is held
constant, which implies monotonicity.

Lift, awell-known statistical measure that can be used to rank rules
in IBM’s Intelligent Miner [14] (it is also known as interest [8] and

strength [10]), can also be framed as a function of confidence [6]:

. _ .
lift (A - C) = [RIconf(A - C) CCS’:F(AC) c

Like conviction, lift is obviously monotone in confidence and
unaffected by rule support when confidence is held fixed.

The remaining interestingness metrics, entropy gain, gini, and chi-
. However, we show that the

squared value, are not implied by,

LEMMA 3.5: The following conditions are sufficient for establish-
ing that a total ordex, defined over a rule value funct{oh
is implied by partial ordeg_ .
(2) f(r) is monotone in support over rules with the same confi-
dence, and
(2) f(r) is anti-monotone in confidence over rules with the

same support.

In [16], the chi-squared, entropy gain, and gini values of a rule are
each defined in terms of a functionf(x,y) where
X = sugA) —sugAOC) and y = sufAO C) given the rule

A - C towhich itis appllea (definitions appear in Appendix A).
These functions are further proven tocoavex. Another important
property of each of these functions is that they reach their
minimum at any rule whose confidence is equal to the “expected”
confidence [17]. More formally,f(x,y) is minimum when
confix,y) = ¢ where confix,y) = y/(x+Yy) and

¢ = sufC)/|D|. To prove our claims, we exploit two properties
of convex functions from [11]:

(1) Convexity of a functionf(x,y) implies that for an arbitrary
dividing point x5, y; of the line segment between two pomts
X1, Y andx,, y, , we havenax(f(x,, y;), f(x,, y,)) = f(xs, y3)

(2) A convex function over a given region must be continuous at
every point of the region’s relative interior.

The next two lemmas show that a convex funcfiany) which is
minimum at conf(x,y) = ¢ has the properties required by
Observation 3.4, wherg from the observation is set to the
expected confidence value.

LEMMA 3.6: For a convex functiofi(x,y) which is minimum at
confix,y) = ¢, f(x,y) is (1) monotone irconf(x,y) for fixed
y, so long asconf(x,y)=c , and (2) monotone yn when
conf(x,y) = A for any constanA > c

Proof: For case (1), whey s fixed to a constantconf(x, Y)
for conf(x, Y)=c represents a horizontal line segment that
extends from pointconf(x, Y) = ¢ leftward. The value of
conf(x, Y) is clearly anti-monotone ix . Becau$e s also
anti-monotone irnx in this region as a consequence of its con-
vexity, it follows thatf(x, Y) is monotone ioonf(x, Y)

For case (2), assume the claim is false. This implies there exists
a vectorv defined bgonf(x,y) = A for some consté c

along whichf is not monotone in . That is, there exist two
points (X4, Y,) and (X5 Y5) along v where
f(x, yp) > (X, y,) vet y, <y, (see Figure 2). Iff were

space of rules can be partitioned into two sets according to
confidence such that when restricted to rules in one set, each
metric is implied by<.. , and when restricted to rules in the other

set, each metric is implied by, . . As a consequence, the optimal
rules with respect to entropy gain, gini, and chi-squared value must
reside on either the upper or lower support confidence border. This

defined to be minimum g0, 0) , then this would contradict the
fact thatf is convex. But sinde as welhas are undefined at
this point, another argument is required. Consider then some
sufficiently small non-zero valué such thej—-6=0 and
f(x1, y1) > f(x,—9,y,) . Becausd is convex and continuous in

idea is formally stated by the observation below.

OBSERVATION 3.4: Given instancé = [U,D, <, C,NO , if_,
implies <
than equal to some value ,asd . implies
of rules whose confidence is less than or equal to
optimal rule appears in either (a) ahy.
lee = U, D, =, C,NO, or (b) anyl

= U,D, <, CNL

, thén an

s.c -optimal set where

To demonstrate that the entropy gain, gini, and chi-squared values

<, over the set of rules whose confidence is greater
over the set

optimal set where

3 Wearemaki ng some simplifications: these functions are actually defined
in terms of avector defining the class distribution after a binary split. We
are restricting attention to the case where there are only two classes (- C
and C whichcorrespondto x and y respectively). Thebinary splitin our
case is the segmentation of datarset D made by testing the antecedent

- condition A of therule.

This well-known property of convex functions is sometimes given as the
definition of aconvex function, e.g. [16]. While this property is necessary
for convexity, it is not sufficient. The proofs of convexity for gini, entro-
py, and chi-sguared value in [16] are neverthelessvalid for the actual def-
inition of convexity since they show that the second derivatives of these
functions are always non-negative, which is necessary and sufficient [11].

satisfy the requirements put forth by this observation, we need t05 e are not being completely rigorous due to the bounded nature of the

know when the total order defined by a rule value function is
implied by <._.. We use an analog of the Lemma 3.3 for this

purpose:

convex region over which f is defined. For example, the point
conf(x, Y) = ¢ may not bewithin thisbounded region since x can be no
greater than |D| . Verifying that these boundary conditions do not affect
the validity of our claimsisleft asan exercise.

(X5, ¥5)
(X1, ¥1) -

conf(x,y) = ¢

 ?

(X31 y3) X
Figure 2. lllustration of case (2) from Lemma 3.6.

its interior region, such a value of & is guaranteed to exist
unless x, = 0, whichisatrivial boundary case. Now, consider
the line [(X1, Y1), (X5 =9, Y,)] . This line must contain a point
(X3, ¥3) suchthat x; and y, are non-negative, and one or both
of X5 or y, isnon-zero. But because f isconvex and minimum
at (Xg,Y3), we have that f(x;,y,) <f(x,—9,y,), which is a
contradiction. O

LEMMA 3.7: For a convex function f(x,y) which is minimum at
conf(x,y) = c, f(x,y) is (1) anti-monotone in conf(x, y) for
fixed y, solong as conf(x, y) < ¢, and (2) monotonein y when
conf(x,y) = A for any constant A<c.

Proof: Similar to the previous. O

The previous two lemmas and Observation 3.4 lead immediately to
the following theorem, which formalizes the fact that mining the
upper and lower support-confidence borders identifies the optimal
rules according to metrics such as entropy gain, gini, and chi-
squared value. Conveniently, an agorithm specifically optimized
for mining the upper border can be used without modification to
mine the lower border by simply negating the consequent of the
given instance, as stated by the subsequent lemma.

THEOREM 3.8: Given instance | = [U,D,<,,C,NL, if <, is
defined over the values given by a convex function f(x, y) over
rules A » C where:

(1) x = sugA) —sufAOC) andy = sudAO C), and

(2) f(x, y) isminimum at conf(x, y) = sugC)/|D|,

then an | -optimal rule appearsin either (a) any I . optimal set
where |, = [U,D, <., C,NLC, or (b) any | -optimal set

where I . = U,D, <, ,C,NC

S-C

LEMMA 3.9: Given an instance I . = [U,D, <. ., C,NC, any
lsc-optimal set for I, = [U,D, <, ~C,NC (where -C
evaluates to true only when C evauates to false) is also an
I c-optimal set.

Proof Idea: Note that conf(A -~ =C) = 1—confA - C). Thus,
maximizing the confidence of A - =C minimizes the confi-
denceof A C. O

Before ending this section we consider one practical issue -- that of
result visualization. Note that the support-confidence borders as
displayed in Figure 1 provide an excellent means by which optimal
sets of rules may be visualized. Each border clearly illustrates the
trade-off between the support and confidence. Additionally, one
can imagine the result visualizer color-coding points along these
borders that are optima according to the various interestingness
metrics, e.g. blue for Laplace value, red for chi-squared value,
green for entropy gain, and so on. The result of modifying
minimum support or confidence on the optimal rules could be
displayed in rea-time as the user drags a marker along either axis

in order to specify a minimum bound.

3.3 Practical Implicationsfor Mining Optimal Con-
junctions

In this section we present and eval uate an algorithm that efficiently
mines an optimal set of conjunctions according to <. (and <
due to Lemma 3.9) from many real-world categorical data-sets,
without requiring any constraints to be specified by the user. We
aso demonstrate that the number of rules produced by this
algorithm for a given instance is typically quite manageable -- on
the order of a few hundred a most. We address the specific
problem of mining optimal conjunctions within categoricaly
valued data, where each conditionin U issimply atest of whether
the given input record contains a particular attribute/value pair,
excluding values from a designated class column. Values from the
designated class column are used as consequents. While our
algorithm requires no minimums on support or confidence, if they
are specified, they can be exploited for better performance. Space
constraints prohibit a full explanation of the workings of this
algorithm, so we highlight only the most important features here.
A complete description appears in an extended draft [7].

The algorithm we use is a variant of Dense-Miner from [6], which
is a constraint-based rule miner suitable for use on large and dense
data-sets. In Dense-Miner, the rule mining problem is framed as a
set-enumeration tree search problem [21] where each node of the
tree enumerates a unique element of 2Y. Dense-Miner returns
every rule that satisfies the input constraints, which include
minimum support and confidence. We modified Dense-Miner to
instead maintain only the set of rules R that are potentially optimal
a any given point during its execution. Whenever a rule r is
enumerated by a node and found to satisfy the input constraints, it
iscompared against every rule presently in R. If r isbetter than or
incomparable to every rule already in R according to the partia
order, then rule r isaddedto R. Also, any rulein R that is worse
than r isremoved. Given this policy, assuming the tree enumerates
every subset of U, upon termination, R isan optimal set.

Because an agorithm which enumerates every subset would be
unacceptably inefficient, we use pruning strategies that greatly
reduce the search space without compromising completeness.
These strategies use Dense-Miner's pruning functions (appearing
in Appendix B), which bound the confidence and support of any
rule that can be enumerated by a descendent of a given node. To
see how these functions are applied in our variant of the algorithm,
consider a nodg with support bousd and confidence bound

To see ifg can be pruned, the algorithm determines if there exists
aruler inR suchthat <, r ,wherg issome imaginary rule
with supports and confidence . Given such a rule, if any
descendent ofy enumerates an optimal rule, then it must be
equivalent tor . This equivalence class is already represented in
R, so there is no need to enumerate these descendents, and can
be pruned.

This algorithm differs from Dense-Miner in only two additional
ways. First, we allow the algorithm to perform a set-oriented best-
first search of the tree instead of a purely breadth-first search.
Dense-miner uses a breadth-first search since this limits the
number of database passes required to the height of the search tree.
In the context of optimized rule mining, a breadth-first strategy can
be inefficient because pruning improves as better rules are found,
and good rules sometimes arise only at the deeper levels. A pure
best-first search requires a database pass for each node in the tree,
which would be unacceptable for large data-sets. Instead, we
process several of the best nodes (at most 5000 in our
implementation) with each database pass in order to reduce the

number of database passes while still substantialy reducing the

search space. For this purpose, a node is better than another if the Data-set Consequent Time (sec) # of Rules
rule it enumerates has a higher confidence value. chess Win <1 50
The remaining modification is the incorporation of inclusive nowin <1 11
pruning as proposed by Webb [23]. This pruning strategy avoids connecta win 642 216
enumerating a rule when it can be determined that its antecedent

can be extended with an additional condition without affecting the draw 3066 171
support of the rule. In the absence of item constraints, this loss 1108 465
optimization prunes many rules that are either non-optimal or letter A-Z 18 322
equivalent to some other optimal rule to be enumerated. dna El 20 9
Unfortunately, when there are item constraintaNin (e.g. “rules IE 23 15
must contain fewer tharkk conditions”), this pruning strategy N a 9
cannot be trivially applied without compromising completeness, so _

it must be disabled. Full details of this pruning strategy are mushroom poisonous <1 12
provided in Appendix B. edible <1l 7
We evaluated our algorithm on the larger of the categorical data- _PUms 1 740 324
sets from the Irvine machine learning database repo§itory, 2 204 702
including chess, mushroom, letter, connect-4, and dna. We also 3 509 267
used the pums data-set from [6] which is compiled from census 4 174 152
data (a similar data-set was used in [8]). For the Irvine data-sets, 5 16 o1
we used each value of the designated class column as the

consequents. For the pums data-set, we used the values of the 6 19 81
RELATL1 column (13 in alif. Each of these data-sets is known to 7 50 183
be difficult for constraint-based rule mining algorithms such as 8 270 210
Apriori,_ even when specifying a strong minimum support 9 843 383
constraint [4,6,8]. 0 575 194
Experiments were performed on an IBM IntelliStation with 400 11 88 165
MHZ Intel Pentium-Il processor and 128 MBytes of main memory. 15 13 1
Execution time and the number of rules returned by the algorithm

appear in Table 1; characteristics of each data-set appear in Table 13 22 102
2. For the Irvine data-sets, with the exception of connect-4, our Table 1. Execution time and number of rules returned.

algorithm identified an optimal set of rules within 30 seconds in

every case, with many runs requiring less than 1 second. Connect- 100 T T T T T T T T T

was the most difficult of the data-sets for two reasons. First, it has 90 ¥ N win o |
substantially more records and more columns than many of the % tie -
other data-sets. But a stronger contributor to this discrepancy wa:s 80 @ o0n, lose = |
the fact that rules with high confidence within the connect-4 data- : W"’“"

set have very low support. For example, with the “tie” class as the ¢ 70 E 70000 cte0 000000008, commmmpns]
consequent, rules with 100% confidence have a support of at mos — ., i %g% 1
14 records. This property greatly reduces pruning effectiveness, & + ‘

resulting in almost one hour of execution time given this § 50 B g
consequent. In cases like these, modest settings of the minimun © i [,

support or confidence constraint can be used to improve runtime = 40 [, %mmm‘]. 1
considerably. For example, a minimum support of 676 records (1% G 3¢ | *@ ! |
of the data-set) reduces execution time to 6 minutes. «;\5\ & @

The number of rules in each optimal set was on the order of a few 20 1 S i
hundred at most. Of the Irvine data-sets, connect-4 contained the 10 + B e SV
most optimal rules, with 216 for win, 171 for tie, and 465 for lose.

We plot the upper support-confidence border for each of these 0
consequents in Figure 3. Rule support is normalized according tc
consequent support so that each border ranges from 0 to 100%

0 10 20 30 40 50 60 70 80 90 100
sup(r)/sup(Q) (A

along thex axis. Figure 3. Upper support/confidence borders for Connect-4.
4. PC-Optimality of interest (bypopulation of interest, we mean the set of records for
4.1 Definition which conditionC evaluates to true). In this section, we propose

another partial order with the goal of remedying this deficiency.
First, thepopulation of a ruleA - C is simply the set of records
from data-setD for which botdh and evaluate to true. We

While sc-optimality is a useful concept, it tends to produce rules
that primarily characterize only a specific subset of the population

denote the population of a rule aop(r) . Clearly then,
6 http://www.ics.uci.edu/ ~m earn/ M.Repository. htm \poqr)\.z sup(r) . A rule which contains some record within its
7 This data-set is available in the form used in these experiments through: population is said toharacterize t .

http://ww. al maden. i bm coml cs/ quest
The values 1-13 for the RELAT1 column correspond to items 1-13 in the
apriori binary format of this data.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.almaden.ibm.com/cs/quest

between rule populations over many rules. However, we will show
Data-set # of Rows # of Columns that we can verify the relationships induced by the partial order
chess 3,196 37 “syntactically” in many cases; that is, by checking the conditions
connect-4 67,557 43 of the rules along with support and confidence, instead of
dna 3124 61 examining the set of database records that comprise their
! populations. Keep in mind that in this subsection we are restricting
letter 20,000 17 attention to mining optimal conjunctions. In typical formulations
mushroom 8,124 23 of mining optimized disjunctions (e.g. [12,20]), syntactic checks
pums 49,046 74 for population subsumption simply require geometrically

comparing the regions represented by the base conditions.

) DEFINITION (A-MAXIMAL): A rule A; - C isa-maximal if there
onruleswhere ry <, r, if and is no rue A,-C such that A OA, and
SUgA; - C) = sugA, - C).

Table 2. Number of rows and columns in each data-set.

Consider now the partial order <.
only if:

* POp(ry) 0 pop(ry) O conf(ry) < conf(ry) , or Note that the definition of an a-maximal rule is such that it need
* pop(ry) O pop(r,) O conf(ry) < conf(r,) . not satisfy the input constraints. The intuition behind a-maximality
Two rules are equivalent according to this partial order if their (“antecedent” maximality) is that an a-maximal rule cannot have
population sets are identical and their confidence values are equalfs antecedent enlarged without strictly reducing its population.

One can _analogous_lyl define the partial ordeg_ . where Given a ruler , we denote an a-maximal rule that has the same
Iy <p-cT2 ifandonly if: population ofr asmmaxr) .Lemma 4.2a implies there is only one
* pop(ry) O pop(r,) Oconf(r,) > conf(r,) or such rule, which means thamax() is in fact a function. The
« pop(r,) 0 pog(r,) Oconf(r,) = conf(r.) . purpose of this function is to provide a concise, cfanonical
4.2 Theoretical | licati description of a rule’s population that allows for efficiently

| b eoretic h mp lca IO?Sd (checking the subsumption condition (Lemma 4.2). In turn, this
tis easy to see that,, is implie c

) i afd. &y .) SO provides a syntactic method for comparing rules Wity
all the claims from Section 3 also hold with respect to pc- (Theorem 4.3).

optimality. Note that< . results in more incomparable rule pairs
than <.. due to the population subsumption requirement. This
implies there will be many more rules in a pc-optimal set compared
to an sc-optimal set. The consequence of these additional rules, a@
formalized by the observation below, is that a pc-optimal set
always contains a rule that is optimal with respect to any of the
previous interestingness metrics, and further with respect to any
constraint that requires the rules to characterize a given subset of
the population of interest.

OBSERVATION 4.1: Given an instance= [U,D, <, C,NO where
(1) =, isimplied bys_pc , and _
(2) N has a constraimt onrules stating that pop(r)
a given subseP of the population of interest,
an | -optimal rule appears in anypc -optimal set where

lpe = U, D,<,, C,N={n}L.

We note that this generalization of sc-optimality is quite broad.
Given the large number of rules that can appear in a pc-optimal set
(see next subsection), a more controlled generalization might be
desirable. One idea is to have the rule set support any constraint
that requires a rule to characterize a given merhber (in place of a
subsetP) of the population of interest. This would still guarantee a
broad characterization, but potentially with much fewer rules. This
notion designates a rute as uninteresting if there exists some set
of rules R such that (1) each rule R
constraints, (2) every member pbp(r) is characterized by at least
one rule inR and (3) each rule R is equal to or better than
according to<.. . (Note that pc-optimality designates a rule as
uninteresting only if there exists such a Bet containing exactly
one rule.) This notion of uninterestingness cannot, to our
knowledge, be expressed using a partial order on rules. Instead, w
are examining how the concept of pc-optimality combined with
constraints can successfully express (and exploit) this notion.

4.3 Practical Implicationsfor Mining Optimal Con-
junctions

Producing an algorithm that can efficiently mine an optimal set o

conjunctions with respect tc,. may seem an impossible

proposition in large data-sets due to the need to verify subsumption

for

LEMMA 4.2A: pop(ry) = pop(ry) <

amaxr,) = amaxr,)

B: pop(r,) O pop(ry,) = amaxr,) O amaxr,)

roof: The O direction is immediate for both cases, so we prove

the O direction. Suppose the claims are false and consider the
rule r5 which is formed by taking the union of the antecedents
from amaxr,) andamaxr,) . We establish each claim by con-
tradiction.

For claim A, if pop(r;) = pop(r,) , then clearlyr; has the
same population as; amg . Since we assume the claim is
false, we have thaimaxr,) is different thamaxr,) . Given
this, eitheramaxr,) 0 amaxr,) oramaxr,) 0 amaxr;) . But
since all three rules have the same population, this leads to the
contradiction that eitheamaxr,) c@maxr,) is not a-maxi-
mal.

For claim B, if pop(ry) O pop(r,) ., thenpop(ry) = pop(ry) .

As a consequence, we must have dragxr,) = amaxry,) by
claim A from above. Since we assume the claim is false, we
must in addition have thatamaxr,) 0amaxr,) or
amaxr,) = amaxr,). The case where they are equal is an
immediate contradiction due to claim A. For the case where
amaxr,) O amaxr,) , note thatamaxrg) 0 amaxr,) , which
contradicts the fact that, = amaxr,) 0 amaxr,) L

satisfies the input THEOREM 4.3A: ry < .1, if and only if:

(1) conf(r,) <conf(r,) andamaxr,) 00 amaxr,) , or
(2) conf(r,) < conf(r,) andamaxr,) O amaxr,) .
B: Iy =pc o if and only if

conf(r,) = conf(r,) andamaxr,) = amaxr,) .

These facts cannot be trivially applied in an efficient manner since

8omputing amaxr) requires scanning the data-set (an algorithm

for this purpose appears in Figure 4). Instead, we describe pruning
optimizations which can be incorporated into a rule miner to avoid

generating many rules that are not pc-optimal. A post-processing
phase then computesnaxr)
§ pass over the database, and this information is used to efficiently
identify any remaining non-optimal rules.

for every rule identified in one final

INPUT: @ ruler and a data-sBx Data-set Consequent | Time(sec) | #of Rules
OuTPUT: amaxr) chess win 2,821 236,735
1. Find the first record inD that is a member of nowin 504 42,187
population of r . Initialize a setA to contain th connect-4 win 19,992 178,678
conditions ofU that evaluate to true on this record, b draw 18,123 119,984
not already inr . loss 34,377 460,444
2. For each remaining recordn which is in the popule letter AZ 65 37.850
of r, remove any condition i which evaluates to f dna El 64 55 347
on this record. E 6 pT ’505
3. Add the conditions irA to the antecedent of and r N 53 9'071
the result. . !
_ _ _ mushroom| poisonous 1 217
Figure 4. Algorithm for computingamaxr) . odible 3 389
INPUT: Ipc = [, D’Spc' C, NC pumsb* 1 1,058 84,594
OuTPUT: An | . -optimal set. 2 829 33,443
) e . 3 305 14,927
1. Find all rules with positive improvement among those 2 770 58 553
satisfying the input constraints. Call this set of ruRes 5 308 21'244
2. Foreachrule iR , associate witmaxr) and put 3 59 5'717
amaxr) into a setR, . 5 i 15’ 174
3. Remove any rule; frolR if there exists sompél R 8 178 22'992
such that such that <, r, according to Theorem 4.3z ’
4. For each rule, O R, , if there is more than one rule ir 9 3,079 160,908
R such thata?1na>(r31 =r, , then remove all but one of 10 3,857 175,061
them fromR . 11 118 5,701
5. ReturnR . 12 12 991
_ _ N _ o 13 482 59,088
Figure5. Algorithm for mining a pc-optimal set of conjunctior Table 3. Execution time and number of rules returned.
OBSERVATION 4.4: Given an instance |, = [U,D, <, C,NL, a immediately following step 2 (sinc®, is a set, we assume it
rule A; —~ C cannot be I, -optimd if there exists some rule contains no duplicates). However, some common rule constraints
A, - C where Ay A, A, sdlisfies the input constraints, (e.g. “a rule must have fewer thé&n conditions”) do not have this
and conf(A,) > conf(A,) . property.
Using the terminology from [6], this observation simply states that In practice, we find that the number of rules returned by this
apc-optimal rule must have anon-negative improvement val ue. We algorithm is considerably larger than that of the algorithm for
can in fact require that improvement be positive since we only need mining sc-optimal sets. On most data-sets, rule constraints such as
one member of each equivalence class. The Dense-Miner minimum support or confidence must be specified to control the
algorithm already provides pruning functions that bound the size of the output as well as execution time. For the execution
improvement value of any rule derivable from a given node. We times reported in Table 3, the minimum support constraint was set
thus modify Dense-Miner to prune nodes whose improvement to ensure that each rule’s population is at least 5% of the
bound is O (see Appendix B for the smplified pruning functions population of interest. For the pums data-set, this constraint was
that C‘?”.be used for this special case). We also again exploit not sufficiently strong to control combinatorial explosion. We
Webb's inclusive pruning strategy for the case where there are nqnerefore simplified the data-set by removing values which appear
item constraints ilN . in 80% or more of the records (the resulting data-set is known as

We can now fully describe an algorithm for mininglgp ~ -optimal pumsb*, and was used in [5]). We conclude that pc-optimal sets of
set of rules without performing any explicit subsumption checks rules are useful primarily on data-sets where the density is
between rule populations (Figure 5). We use the above-describeg¢omewhat subdued, or when the user is capable of specifying
variant of Dense-Miner to implement step 1 of this algorithm. Step Strong rule constraints prior to mining.

3 applies Theorem 4.3a to identify non-optimal rules for removal. .

This step requires we first associate each rule with its a-maximal©- Conclusions

rule (step 2). To find the a-maximal rules, we apply the algorithm We have defined a new optimized rule mining problem that allows
in Figure 4 for each rule iR, using a single shared database scar@ partial order in place of the typical total order on rules. We have
For a data-set such as connect-4, our implementation of this stefglso shown that solving this optimized rule mining problem with
requires less than 3 seconds for a set with up to 10,000 rulesrespect to a particular partial order,, (and in some cases its
Finally, step 4 applies Theorem 4.3b in order to identify equivalent analog <,_.) is guaranteed to identify a most-interesting rule
rules so that there is only one representative from each equivalencaccording to several interestingness metrics including support,
class in the returned result. confidence, gain, laplace value, conviction, lift, entropy gain, gini,
and chi-squared value. In practice, identifying such an optimal set
of conjunctive rules can be done efficiently, and the number of
Orules in such a set is typically small enough to be easily browsed by

This algorithm could be simplified slightly when the input
constraints N have the property thamaxr) satisfis
wheneverr does. In this case, the > could be returne

an end-user. We lastly generaized this concept using another
partial order <. in order to ensure that the entire population of
interest is well-characterized. This generalization defines a set of
rules that contains the most interesting rule according to any of the
above metrics, even if one requires this rule to characterize a
specific subset of the population of interest.

These techniques can be used to facilitate interactivity in the
process of mining most-interesting rules. After mining an optimal
set of rules according to thefirst partial order, the user can examine
the most-interesting rule according to any of the supported
interestingness metrics without additional querying or mining of
the database. Minimum support and confidence can aso be
modified and the effects immediately witnessed. After mining an
optimal set of rules according to the second partial order, in
addition to the above, the user can quickly find the most-interesting
rule that characterizes any given subset of the population of
interest. This extension overcomes the deficiency of most
optimized rule miners where much of the population of interest
may be poorly characterized or completely uncharacterized by the
mined rule(s).

Acknowledgments
We are indebted to Ramakrishnan Srikant and Dimitrios
Gunopulos for their helpful suggestions and assistance.

References

[1] Agrawal, R.; Imidinski, T.; and Swami, A. 1993. Mining
Associations between Sets of Itemsin Massive Databases. In
Proc. of the 1993 ACM-SIGMOD Int'| Conf. on Management
of Datg 207-216.

[2] Agrawal, R.; Mannila, H.; Srikant, R.; Toivonen, H.; and
Verkamo, A. |. 1996. Fast Discovery of Association Rules. In
Advances in Knowledge Discovery and Data MinigAl
Press, 307-328.

[3] Ali, K.; Manganaris, S.; and Srikant, R. 1997. Partial Classifi-
cation using Association Rules. In Proc. of the 3rd Int'| Conf.
on Knowledge Discovery in Databases and Data Mining
115-118.

[4] Bayardo, R. J. 1997. Brute-Force Mining of High-Confidence
Classification Rules. In Proc. of the Third Int’l Conf. on
Knowledge Discovery and Data Minint3-126.

[5] Bayardo, R. J. 1998. Efficiently Mining Long Patterns from
Databases. In Proc. of the 1998 ACM-SIGMOD Int’| Conf. on
Management of Dafa5-93.

[6] Bayardo, R.J.; Agrawal, R.; and Gunopulos, D. 1999. Con-
straint-Based Rule Mining in Large, Dense Databases. In
Proc. of the 15th Int'l Conf. on Data Engineerjig8-197.

[7] Bayardo, R. J. and Agrawal, R. 1999. Mining the Most Inter-
esting Ruless BM Research Report. Available from:
http://ww. al maden. i bm coni cs/ quest

[8] Brin, S.; Motwani, R.; Uliman, J.; and Tsur, S. 1997.
Dynamic Itemset Counting and Implication Rules for Market
Basket Data. In Proc. of the 1997 ACM-SIGMOD Int'l Conf.
on the Management of Dat2b5-264.

[9 Clark, P. and Boswell, P. 1991. Rule Induction with CN2:

Some Recent Improvements. In Machine Learning: Proc. of

the Fifth European Conferencts1-163.

Dhar, V. and Tuzhilin, A. 1993. Abstract-driven pattern dis-

covery in databases. IEEE Transactions on Knowledge and

Data Engineering5(6).

[10]

[11] Eggleston, H. G. 1963. ConvexityCambridge Tractsin Math-
ematics and Mathematical Physics, no. 47. Smithies, F. and
Todd, J. A. (eds.). Cambridge University Press.

[12] Fukuda, T.; Morimoto, Y.; Morishita, S.; and Tokuyama, T.

1996. Data Mining using Two-Dimensional Optimized Asso-
ciation Rules: Scheme, Algorithms, and Visualization. In

Proc. of the 1996 ACM-SIGMOD Int’l Conf. on the Manage-
ment of Datal3-23.

[13] Goethals, B. and Van den Bussche, J. 1999. A Priori Versus A
Posteriori Filtering of Association Rules. In Proc. of the 1999
ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovergaper 3.

[14] International Business Machines, 1996. IBM Intelligent Miner
User's GuideVersion 1, Release 1.

[15] Mitchell, T. M. 1997. Machine LearningMcGraw-Hill, Inc.

[16] Morimoto, Y.; Fukuda, T.; Matsuzawa, H.; Tokuyama, T.; and
Yoda, K. 1998. Algorithms for Mining Association Rules for
Binary Segmentations of Huge Categorical Databases. In
Proc. of the 24th Very Large Data Bases CA#80-391.

[17] Morishita, S. 1998. On Classification and Regression. In
Proc. of the First Int'l Conf. on Discovery Science -- Lecture
Notes in Artificial Intelligencd532:40-57.

[18] Nakaya, A. and Morishita, S. 1999. Fast Parallel Search for
Correlated Association Rulegnpublished manuscript.

[19] Piatetsky-Shapiro, G. 1991. Discovery, Analysis, and Presen-
tation of Strong Rules. Chapter 13 of Knowledge Discovery in
DatabasesAAAI/MIT Press, 1991.

[20] Rastogi, R. and Shim, K. 1998. Mining Optimized Associa-
tion Rules with Categorical and Numeric Attributes. In Proc.
of the 14th Int'l Conf. on Data Engineering)3-512.

[21] Rymon, R. 1992. Search through Systematic Set Enumera
tion. In Proc. of Third Int'l Conf. on Principles of Knowledge
Representation and Reason;js39-550.

[22] Srikant, R.; Vu, Q.; and Agrawal, R. 1997. Mining Associa
tion Rules with Item Constraints. In Proc. of the Third Int'l
Conf. on Knowledge Discovery in Databases and Data Min-
ing, 67-73.

[23] Webb, G. I. 1996. Inclusive Pruning: A New Class of Pruning
Axiom for Unordered Search and its Application to Classifi-
cation Learning. In Proc. of the 1996 Australian Computer
Science Conferenc#-10.

[24] Webb, G. I. 1995. OPUS: An Efficient Admissible Algorithm
for Unordered Search. Journal of Artificial Intelligence
Research3:431-465.

Appendix A

Here we provide definitions for the gini, entropy gain, and chi-
squared rule value functions. For a given condition A, we denote
the fraction of records that satisfy the consequent condition C
among those that satisfy A as p(A) , and the fraction of records
that do not satisfy the consequent condition among those that
satisfy A as p(A) . Note then that:

_ SUp(A - Q) - _ sup(A) —sup(A - C
p(A) = <A and p(A) = SurA)

http://www.almaden.ibm.com/cs/quest
http://www.almaden.ibm.com/cs/quest

gini(A -~ C) = 1-[p(0)2+p(0)?]

ugA)

D] =[p(A)?+ p(A)?])

—ﬂﬁ{;—’*)(l—[p(ﬂ)hp(ﬂ)ﬂ)

en(A - C) = —[p(t)log(p(t)) + p(0)log(p(C))]

- S_MTDIA [P(A)log(p(A) + P(A) log(P(A))]

_sug~A) ‘ l;\ A\ (- A)log(p(=A) + p(~A)log(p(~A)]

chi?(A - C) =

sugA)[p(A) — p()]2 — sup=A)[p(=A) - p(0)]?
p(0)

+ SUA)[P(A) ~p(0)]2 — suf=A)[p(=A) — p(0)]?
p(0)

Since C and D are constant for a given instance of the problem,
termssuch as p(0) = sugC)/|D| are constants. Any of the above
variable terms can be expressed as functions of
X = sugA) —sugA - C) and y = sugA - C), and hence so
can the functions themselves. For example, sufA) = y+X,
sug~A) = [DI=(y+x), p(A) = y/(y+x), p(A) = x/(y+Xx),
and so on.

Appendix B
Set-Enumer ation Tree Sear ch.

The set-enumeration tree search framework is a systematic and
complete tree expansion procedure for searching through the
power set of agiven set U . Theideaisto first impose atota order
on the elements of U . The root node of the tree will enumerate the
empty set. The children of anode N will enumerate those sets that
can be formed by appending asingle element of U to N, with the
restriction that this single element must follow every element
dready in N according to the total order. For example, a fully-
expanded set-enumeration tree over a set of four elements (where
each element of the set is denoted by its position in the ordering)
appearsin Figure 6.

’\\ ’\ ’

1,2 13 14 ’ 2,4 3,4
12,31,24 13,4 234
1,234

Figure 6. A complete set-enumeration tree over a 4 item s

To facilitate pruning, we use a node representation called a group
where the set enumerated by a node g is called the head and
denoted h(g). The set of viable elements of U which can be
appended to h(g) in order to form a child is called the tail and
denoted t(g). Making the taill elements explicit enables
optimizations such as element reordering (for dynamic tree
rearrangement) and tail pruning. Element reordering involves
locally changing the total order on U at each node in the tree to
maximize pruning effectiveness. Tail pruning involves removing
elements from the tail if they cannot possibly be part of any
solution in the sub-tree rooted at the node. This directly reduces the
search space, and indirectly reduces the search space by improving
the bounds we compute on values such as the confidence of any
rule that can be enumerated by a descendent of the node.

Pruning with Confidence, Support, and I mprovement

We say arule r (which we represent using only its antecedent

since the consequent it fixed) is derivable from a group g if

h(g) Or, and r O h(g) O t(g) . By definition, any rule that can be

enumerated by a descendent of g in the set-enumeration tree is

also derivable from g . From [6] we have that:

 The functionf(x,y) = x/(x+y) provides an upper-bound on
the confidence of any conjunctive rule derivable from a given
group g , wherex ang are non-negative integers such that
y<suph(g) O t(g) - -C) andx=suph(g) - C) .

* The value ofx from above provides an upper-bound on support.

» If the confidence bound given By from above for some group
g is less than or equal to the confidence of any rule enumer-
ated thus far such that is a subseh(@) and satisfies the
input constraints, then the maximum improvement of any deriv-
able rule is zero.

« If the following value is equal to zero, then the maximum
improvement of any derivable rule is zero:

B = min(0u O h(g), sup((h(g) —{u}) O {-u} - =C))
We refer the reader to [6] for details on how to compute the above
values economically given that the data-set is large, and how to
heuristically reorder the elements bf in order to ensure these
functions have plenty of pruning opportunities.

Inclusive Pruning

Webb's inclusive pruning strategy [23] moves a sufiset of the tail
of a groupg into its head whenever the following fact can be
established: if some solution is derivable frgm |, then at least one
of the solutions derivable from is a superseTof . For example,
in the case of mining optimized conjunctions according to the
Laplace function (and many of the other metrics we have examined
including our partial orders), suppose
suph(g) - C) = suph(g) O {u} - C) for some elementi in
t(g) . Ignoring the effects of rule constraints, if some rule
derivable fromg is optimal, then so is the rulgl {u} , Which is
also derivable frong . If one or more such elements are found in
the tail of some node, instead of expanding its children, these
elements can all be moved into the head to form a new node that
replaces it.

Some constraints may unfortunately prohibit straightforward
application of this particular inclusive pruning strategy. For
example, an item constraint may disallaw from participating in a
solution when combined with some other items fro(g) and
t(g) . Another problematic constraint is one which bounds the size
of a rule’s antecedent. Luckily, work-arounds are typically
possible. For example, in the case where a bdund is specified on
the number of base conditions that may appear in an antecedent,
the strategy can be applied safely whenéhgg) O t(g)| < k

	1. Introduction
	2. Preliminaries
	2.1 Generic Problem Statement
	2.2 Previous Algorithms for the Optimized Rule Mining Problem
	2.3 Mining Optimized Rules under Partial Orders
	2.4 Monotonicity

	3. SC-Optimality
	3.1 Definition
	3.2 Theoretical Implications
	3.3 Practical Implications for Mining Optimal Conjunctions

	4. PC-Optimality
	4.1 Definition
	4.2 Theoretical Implications
	4.3 Practical Implications for Mining Optimal Conjunctions

	5. Conclusions
	References
	Appendix A
	Appendix B

