
Abstract
Several algorithms have been proposed for finding the “best,” “opti-
mal,” or “most interesting” rule(s) in a database according to a vari-
ety of metrics including confidence, support, gain, chi-squared
value, gini, entropy gain, laplace, lift, and conviction. In this paper,
we show that the best rule according to any of these metrics must
reside along a support/confidence border. Further, in the case of
conjunctive rule mining within categorical data, the number of rules
along this border is conveniently small, and can be mined effi-
ciently from a variety of real-world data-sets. We also show how
this concept can be generalized to mine all rules that are best
according to any of these criteria with respect to an arbitrary subset
of the population of interest. We argue that by returning a broader
set of rules than previous algorithms, our techniques allow for
improved insight into the data and support more user-interaction in
the optimized rule-mining process.

1. Introduction
There are numerous proposals for mining rules from data. Some are
constraint-based in that they mine every rule satisfying a set of hard
constraints such as minimum support or confidence (e.g. [1,2,6]).
Others are heuristic in that they attempt to find rules that are
predictive, but make no guarantees on the predictiveness or the
completeness of the returned rule set (e.g. decision tree and
covering algorithms [9,15]). A third class of rule mining
algorithms, which are the subject of this paper, identify only the
most interesting, or optimal, rules according to some
interestingness metric [12,18,20,24]. Optimized rule miners are
particularly useful in domains where a constraint-based rule miner
produces too many rules or requires too much time.

It is difficult to come up with a single metric that quantifies the
“interestingness” or “goodness” of a rule, and as a result, several
different metrics have been proposed and used. Among them are
confidence and support [1], gain [12], variance and chi-squared
value [17,18], entropy gain [16,17], gini [16], laplace [9,24], lift
[14] (a.k.a. interest [8] or strength [10]), and conviction [8]. Several
algorithms are known to efficiently find the best rule (or a close
approximation to the best rule [16]) according to a specific one of
these metrics [12,18,20,24]. In this paper, we show that a single yet
simple concept of rule goodness captures the best rules according to
any of them. This concept involves a partial order on rules defined
in terms of both rule support and confidence. We demonstrate that
the set of rules that are optimal according to this partial order
includes all rules that are best according to any of the above
metrics, even given arbitrary minimums on support and/or
confidence.

In the context of mining conjunctive association rules, we present
an algorithm that can efficiently mine an optimal set according to
this partial order from a variety of real-world data-sets. For
example, for each of the categorical data-sets from the Irvine
machine learning repository (excepting only connect-4), this
algorithm requires less than 30 seconds on a 400Mhz Pentium-II
class machine. Specifying constraints such as minimum support or
confidence reduces execution time even further. While optimizing
according to only a single interestingness metric could sometimes
require less overhead, the approach we propose is likely to be
advantageous since it supports an interactive phase in which the
user can browse the optimal rule according to any of several
interestingness metrics. It also allows the user to interactively tweak
minimums on support and confidence. Witnessing such effects with
a typical optimized rule miner requires repeated mining runs, which
may be impractical when the database is large.

Another need for repeated invocations of an optimized rule miner
arises when the user needs to gain insight into a broader population
than what is already well-characterized by previously discovered
rules. We show how our algorithm can be generalized to produce
every rule that is optimal according to any of the previously
mentioned interestingness metrics, and additionally, with respect to
an arbitrary subset of the population of interest. Because data-
mining is iterative and discovery-driven, identifying several good
rules up-front in order to avoid repeatedly querying the database
reduces total mining time when amortized over the entire process
[13].

2. Preliminaries
2.1 Generic Problem Statement
A data-set is a finite set of records. For the purpose of this paper, a
record is simply an element on which we apply boolean predicates
called conditions. A rule consists of two conditions called the
antecedent and consequent, and is denoted as where is
the antecedent and the consequent. A rule constraint is a boolean
predicate on a rule. Given a set of constraints , we say that a rule

 satisfies the constraints in if every constraint in evaluates to
true given . Some common examples of constraints are item
constraints [22] and minimums on support and confidence [1]. The
input to the problem of mining optimized rules is a -tuple

 where:

• is a finite set of conditions;
• is a data-set;
• is a total order on rules;
• is a condition specifying the rule consequent;
• is a set of constraints on rules.
When mining an optimal disjunction, we treat a set of conditions

 as a condition itself that evaluates to true if and only if one
or more of the conditions within evaluates to true on the given
record. When mining an optimal conjunction, we treat as a
condition that evaluates to true if and only if every condition within

 evaluates to true on the given record. For both cases, if is
empty then it always evaluates to true. Algorithms for mining
optimal conjunctions and disjunctions differ significantly in their

A C→ A
C

N
r N N

r

5
U D C N, ,≤, ,〈 〉
U
D
≤
C
N

A U⊆
A

A

A A

Mining the Most Interesting Rules
Roberto J. Bayardo Jr.

IBM Almaden Research Center
http://www.almaden.ibm.com/cs/people/bayardo/

bayardo@alum.mit.edu

Rakesh Agrawal
IBM Almaden Research Center

http://www.almaden.ibm.com/u/ragrawal/
ragrawal@acm.org

Appears in Proc. of the Fifth ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, 145-154, 1999.

http://www.almaden.ibm.com/cs/people/bayardo/
http://www.almaden.ibm.com/cs/people/ragrawal/

details, but the problem can be formally stated in an identical
manner1:

PROBLEM (OPTIMIZED RULE MINING): Find a set such that
(1) satisfies the input constraints, and
(2) there exists no set such that satisfies the input

constraints and .
Any rule whose antecedent is a solution to an instance of
the optimized rule mining problem is said to be -optimal (or just
optimal if the instance is clear from the context). For simplicity, we
sometimes treat rule antecedents (denoted with and possibly
some subscript) and rules (denoted with and possibly some
subscript) interchangeably since the consequent is always fixed
and clear from the context.

We now define the support and confidence values of rules. These
values are often used to define rule constraints by bounding them
above a pre-specified value known as minsup and minconf
respectively [1], and also to define total orders for optimization
[12,20]. The support of a condition is equal to the number of
records in the data-set for which evaluates to true, and this value
is denoted as . The support of a rule , denoted
similarly as , is equal to the number of records in the
data-set for which both and evaluate to true.2 The antecedent
support of a rule is the support of its antecedent alone. The
confidence of a rule is the probability with which the consequent
evaluates to true given that the antecedent evaluates to true in the
input data-set, computed as follows:

2.2 Previous Algorithms for the Optimized Rule
Mining Problem

Many previously proposed algorithms for optimized rule mining
solve specific restrictions of the optimized rule mining problem.
For example, Webb [24] provides an algorithm for mining an
optimized conjunction under the following restrictions:

• contains an existence test for each attribute/value pair appear-
ing in a categorical data-set outside a designated class column;

• orders rules according to their laplace value (defined later);
• is empty.
Fukuda et al. [12] provide algorithms for mining an optimized dis-
junction where:
• contains a membership test for each square of a grid formed

by discretizing two pre-specified numerical attributes of a data-
set (a record is a member of a square if its attribute values fall
within the respective ranges);

• orders rules according to either confidence, antecedent sup-
port, or a notion they call gain (also defined later);

• includes minimums on support or confidence, and includes
one of several possible “geometry constraints” that restrict the
allowed shape formed by the represented set of grid squares;

Rastogi and Shim [20] look at the problem of mining an optimized
disjunction where:

• includes a membership test for every possible hypercube
defined by a pre-specified set of record attributes with either

ordered or categorical domains;
• orders rules according to antecedent support or confidence;
• includes minimums on antecedent support or confidence, a

maximum on the number of conditions allowed in the ante-
cedent of a rule, and a requirement that the hypercubes corre-
sponding to the conditions of a rule are non-overlapping.

In general, the optimized rule mining problem, whether
conjunctive or disjunctive, is NP-hard [17]. However, features of a
specific instance of this problem can often be exploited to achieve
tractability. For example, in [12], the geometry constraints are used
to develop low-order polynomial time algorithms. Even in cases
where tractability is not guaranteed, efficient mining in practice
has been demonstrated [18,20,24]. The theoretical contributions in
this paper are conjunction/disjunction neutral. However, we focus
on the conjunctive case in validating the practicality of these
results through empirical evaluation.

2.3 Mining Optimized Rules under Partial Orders
We have carefully phrased the optimized rule mining problem so
that it may accommodate a partial order in place of a total order.
With a partial order, because some rules may be incomparable,
there can be several equivalence classes containing optimal rules.
The previous problem statement requires an algorithm to identify
only a single rule from one of these equivalence classes. However,
in our application, we wish to mine at least one representative from
each equivalence class that contains an optimal rule. To do so, we
could simply modify the previous problem statement to find all
optimal rules instead of just one. However, in practice, the
equivalence classes of rules can be large, so this would be
unnecessarily inefficient. The next problem statement enforces our
requirements specifically:

PROBLEM (PARTIAL-ORDER OPTIMIZED RULE MINING): Find a set
 of subsets of such that:

(1) every set in is optimal as defined by the optimized
rule mining problem.

(2) for every equivalence class of rules as defined by the partial
order, if the equivalence class contains an optimal rule, then
exactly one member of this equivalence class is within .

We call a set of rules whose antecedents comprise a solution to an
instance of this problem an -optimal set. An -optimal rule is
one that may appear in an -optimal set.

2.4 Monotonicity
Throughout this paper, we exploit (anti-)monotonicity properties
of functions. A function is said to be monotone (resp. anti-
monotone) in if implies that (resp.

). For example, the confidence function, which is
defined in terms of rule support and antecedent support, is anti-
monotone in antecedent support when rule support is held fixed.

3. SC-Optimality
3.1 Definition
Consider the following partial order on rules. Given rules
and , if and only if:
• , or
• .
Additionally, if and only if and

.

An -optimal set where contains this partial order is depicted in
Figure 1. Intuitively, such a set of rules defines a support-
confidence border above which no rule that satisfies the input
constraints can fall.

1 Algorithms for mining optimal disjunctions typically allow a single fixed
conjunctive condition without complications, e.g. see [20]. We ignore this
issue for simplicity of presentation.

2 This follows the original definition of support as defined in [1]. The reader
is warned that in the work of Fukuda et. al. [14] and Rastogi and Shim [20]
(who are careful to note the same discrepancy), the definition of support
corresponds to our notion of antecedent support.

A1 U⊆
A1

A2 U⊆ A2
A1 A2<

A C→ I
I

A
r

A
A

supA() A C→
supA C→()

A C

conf A C→() supA C→()
supA()

----------------------------=

U

 ≤
N

U

≤

N

U

≤
N

k

O U
A O

O

I I I
I

f x()
x x1 x2< f x1() f x2()≤

f x1() f x2()≥

 sc≤ r1
r2 r1 sc< r2

supr1() supr2() conf r1() conf r2()<∧≤
supr1() supr2() conf r1() conf r2()≤∧<

r1 sc= r2 supr1() supr2()=
conf r1() conf r2()=

I I

Consider also the similar partial order such that if
and only if:
• , or
• .
The equivalence condition is the same as before. An optimal set of
rules according to this partial order forms a lower border.

3.2 Theoretical Implications
In this section, we show that for many total orders intended to
rank rules in order of interestingness, we have that

, and . We say that any
such total order is implied by . This property of a total order
is useful due to the following fact:

LEMMA 3.1: Given the problem instance
such that is implied by , an -optimal rule is contained
within any -optimal set where .

Proof: Consider any rule that is not -optimal (for simplicity
we will ignore the presence of constraints in). Because is
non-optimal, there must exist some rule that is optimal such
that . But then we also have that since is
implied by . This implies that any non- -optimal rule is
either non- -optimal, or it is equivalent to some -optimal rule
which resides in an -optimal equivalence class. At least one

-optimal equivalence class must therefore contain an -opti-
mal rule. Further, because is implied by , every rule in
this equivalence class must be -optimal. By definition, an -
optimal set will contain one of these rules, and the claim fol-
lows.

Put simply, mining the upper support/confidence border identifies
optimal rules according to several different interestingness metrics.
We will show that these metrics include support, confidence,
conviction, lift, laplace, gain, and an unnamed interest measure
proposed by Piatetsky-Shapiro [19]. If we also mine the lower

border, metrics such as entropy gain, gini, and chi-squared value
are also included. But first, consider the following additional
property of total orders implied by :

OBSERVATION 3.2: Given instance such that
 is implied by , and contains a minimum support con-

straint and/or a minimum confidence constraint , an -
optimal rule is contained within any -optimal set where

.

The implication of this fact is that we can mine without minimum
support and confidence constraints, and the optimal rule given any
setting of these constraints will remain in the mined rule set. This
allows the user to witness the effects of modifying these
constraints without further mining of the data -- a useful fact since
the user often cannot determine accurate settings of minimum
support or confidence apriori. Minimum support and confidence
constraints are quite critical in some applications of optimized rule
mining, particularly when the optimization metric is itself support
or confidence as in [12] and [20].

To identify the interestingness metrics that are implied by , we
use the following lemma.

LEMMA 3.3: The following conditions are sufficient for establish-
ing that a total order defined over a rule value function
is implied by partial order :
(1) is monotone in support over rules with the same confi-
dence, and
(2) is monotone in confidence over rules with the same
support.

Proof: Suppose , then consider a rule where
 and . Note that by defini-

tion and . Now, if a total order has the mono-
tonicity properties from above, then and . Since
total orders are transitive, we then have that , which
establishes the claim.

These conditions trivially hold when the rule value function is
 or . So consider next the Laplace function which is

commonly used to rank rules for classification purposes [9,24].

The constant is an integer greater than 1 (usually set to the
number of classes when building a classification model). Note that
if confidence is held fixed to some value , then we can rewrite the
Laplace value as below.

It is straightforward to show that this expression is monotone in
rule support since and . The Laplace function is also
monotone in confidence among rules with equivalent support. To
see why, note that if support is held constant, in order to raise the
function value, we need to decrease the value of the denominator.
This decrease can only be achieved by reducing antecedent
support, which implies a larger confidence. Note that an optimal
set contains the optimized Laplace rule for any valid setting of .
This means the user can witness the effect of varying on the
optimal rule without additional mining of the database.

The gain function of Fukuda et al. [12] is given above, where is
a fractional constant between 0 and 1. If confidence is held fixed at

, then this function is equal to , which is

 s c¬≤ r1 s c¬< r2

supr1() supr2() conf r1() conf r2()>∧≤
supr1() supr2() conf r1() conf r2()≥∧<

Support

non-optimal rules fall within these borders

sc-optimal rule

Confidence

0%

No rules fall
outside these borders

s c-optimal rule

Figure 1. Upper and lower support-confidence borders.

 t≤

r1 sc< r2 r1 t≤⇒ r2 r1 sc= r2 r1⇒ t= r2
 t≤ sc≤

I U D t≤ C N, , , ,〈 〉=
 t≤ sc≤ I
Isc Isc U D sc≤ C N, , , ,〈 〉=

r1 Isc
N r1

r2
r1 sc< r2 r1 t≤ r2 t≤

 sc≤ Isc
I I

Isc
Isc I

 t= sc=
I Isc

 sc≤
I U D t≤ C N, , , ,〈 〉=

 t≤ sc≤ N
ns nc I

Isc
Isc U D sc≤ C N ns nc,{ } }–, , , ,〈 〉=

 sc≤

 t≤ f r()
 sc≤

f r()

f r()

r1 sc< r2 r
supr1() supr()= conf r2() conf r()=

r1 sc≤ r r sc≤ r2
r1 t≤ r r t≤ r2

r1 t≤ r2

supr() conf r()

laplaceA C→() supA C→() 1+
supA() k+

--------------------------------------=

k

c

laplacer() supr() 1+
supr() c⁄ k+
------------------------------=

k 1> c 0≥

k
k

gain A C→() supA C→() θ supA()×–=

θ

c supr() 1 Θ c⁄–()

trivially monotone in support as long as . We can ignore the
case where if we assume there exists any rule satisfying
the input constraints such that . This is because for any
pair of rules and such that and ,
we know that irrespective of their support.
Should this assumption be false, the gain criteria is optimized by
any rule with zero support should one exist (e.g. in the conjunctive
case, one can simply add conditions to a rule until its support drops
to zero).

The gain function is monotone in confidence among rules with
equivalent support for reasons similar to the case of the Laplace
function. If support is held constant, then an increase in gain
implies a decrease in the subtractive term. The subtractive term can
be decreased only by reducing antecedent support, which implies a
larger confidence. Note that, like from the Laplace function,
after identifying the optimal set of rules, the user can vary and
view its effect on the optimal rule without additional mining.
Another interestingness metric that is identical to gain for a fixed
value of was introduced by Piatetsky-Shapiro
[19]:

Consider next conviction [8], which was framed in [6] as a
function of confidence:

Conviction is obviously monotone in confidence since confidence
appears in a subtractive term within the denominator. It is also
unaffected by variations in rule support if confidence is held
constant, which implies monotonicity.

Lift, a well-known statistical measure that can be used to rank rules
in IBM’s Intelligent Miner [14] (it is also known as interest [8] and
strength [10]), can also be framed as a function of confidence [6]:

Like conviction, lift is obviously monotone in confidence and
unaffected by rule support when confidence is held fixed.

The remaining interestingness metrics, entropy gain, gini, and chi-
squared value, are not implied by . However, we show that the
space of rules can be partitioned into two sets according to
confidence such that when restricted to rules in one set, each
metric is implied by , and when restricted to rules in the other
set, each metric is implied by . As a consequence, the optimal
rules with respect to entropy gain, gini, and chi-squared value must
reside on either the upper or lower support confidence border. This
idea is formally stated by the observation below.

OBSERVATION 3.4: Given instance , if
implies over the set of rules whose confidence is greater
than equal to some value , and implies over the set
of rules whose confidence is less than or equal to , then an -
optimal rule appears in either (a) any optimal set where

, or (b) any -optimal set where
.

To demonstrate that the entropy gain, gini, and chi-squared values
satisfy the requirements put forth by this observation, we need to
know when the total order defined by a rule value function is
implied by . We use an analog of the Lemma 3.3 for this
purpose:

LEMMA 3.5: The following conditions are sufficient for establish-
ing that a total order defined over a rule value function
is implied by partial order :
(1) is monotone in support over rules with the same confi-
dence, and
(2) is anti-monotone in confidence over rules with the
same support.

In [16], the chi-squared, entropy gain, and gini values of a rule are
each defined in terms of a function where

 and given the rule
 to which it is applied3 (definitions appear in Appendix A).

These functions are further proven to be convex. Another important
property of each of these functions is that they reach their
minimum at any rule whose confidence is equal to the “expected”
confidence [17]. More formally, is minimum when

 where and
. To prove our claims, we exploit two properties

of convex functions from [11]:

(1) Convexity of a function implies that for an arbitrary
dividing point of the line segment between two points

 and , we have .4

(2) A convex function over a given region must be continuous at
every point of the region’s relative interior.

The next two lemmas show that a convex function which is
minimum at has the properties required by
Observation 3.4, where from the observation is set to the
expected confidence value.

LEMMA 3.6: For a convex function which is minimum at
, is (1) monotone in for fixed

, so long as , and (2) monotone in when
 for any constant .

Proof: For case (1), when is fixed to a constant ,
for represents a horizontal line segment that
extends from point leftward. The value of

 is clearly anti-monotone in . Because is also
anti-monotone in in this region as a consequence of its con-
vexity, it follows that is monotone in 5.

For case (2), assume the claim is false. This implies there exists
a vector defined by for some constant
along which is not monotone in . That is, there exist two
points and along where

 yet (see Figure 2). If were
defined to be minimum at , then this would contradict the
fact that is convex. But since as well as are undefined at
this point, another argument is required. Consider then some
sufficiently small non-zero value such that and

. Because is convex and continuous in

c Θ≥
c Θ< r

conf r() Θ≥
r1 r2 conf r1() Θ≥ conf r2() Θ<

gain r1() gain r2()≥

k
θ

Θ supC() D⁄=

p-s A C→() supA C→() supA()supC()
D

--------------------------------–=

convictionA C→() D supC()–
D 1 conf A C→()–()
--=

lift A C→() D conf A C→()
supC()

--------------------------------------=

 sc≤

 sc≤
 s c¬≤

I U D t≤ C N, , , ,〈 〉= sc≤
 t≤

γ s c¬≤ t≤
γ I

Isc
Isc U D sc≤ C N, , , ,〈 〉= Is c¬
Is c¬ U D s c¬≤ C N, , , ,〈 〉=

 s c¬≤

3 We are making some simplifications: these functions are actually defined
in terms of a vector defining the class distribution after a binary split. We
are restricting attention to the case where there are only two classes (
and which correspond to and respectively). The binary split in our
case is the segmentation of data-set made by testing the antecedent
condition of the rule.

4 This well-known property of convex functions is sometimes given as the
definition of a convex function, e.g. [16]. While this property is necessary
for convexity, it is not sufficient. The proofs of convexity for gini, entro-
py, and chi-squared value in [16] are nevertheless valid for the actual def-
inition of convexity since they show that the second derivatives of these
functions are always non-negative, which is necessary and sufficient [11].

5 We are not being completely rigorous due to the bounded nature of the
convex region over which is defined. For example, the point

 may not be within this bounded region since can be no
greater than . Verifying that these boundary conditions do not affect
the validity of our claims is left as an exercise.

 t≤ f r()
 s c¬≤

f r()

f r()

f x y,()
x supA() supA C∪()–= y supA C∪()=
A C→

C¬
C x y

D
A

f x y,()
conf x y,() c= conf x y,() y x y+()⁄=
c supC() D⁄=

f x y,()
x3 y3,

x1 y1, x2 y2, max f x1 y1,() f x2 y2,(),() f x3 y3,()≥

f x y,()
conf x y,() c=

γ

f x y,()
conf x y,() c= f x y,() conf x y,()
y conf x y,() c≥ y
conf x y,() A= A c≥

y Y conf x Y,()
conf x Y,() c≥

conf x Y,() c=
conf x Y,() x f

x
f x Y,() conf x Y,()

f
conf x Y,() c= x

D

v conf x y,() A= A c≥
f y

x1 y1,() x2 y2,() v
f x1 y1,() f x2 y2,()> y1 y2< f

0 0,()
f f v

δ x2 δ– 0≥
f x1 y1,() f x2 δ– y2,()> f

its interior region, such a value of is guaranteed to exist
unless , which is a trivial boundary case. Now, consider
the line . This line must contain a point

 such that and are non-negative, and one or both
of or is non-zero. But because is convex and minimum
at , we have that , which is a
contradiction.

LEMMA 3.7: For a convex function which is minimum at
, is (1) anti-monotone in for

fixed , so long as , and (2) monotone in when
 for any constant .

Proof: Similar to the previous.

The previous two lemmas and Observation 3.4 lead immediately to
the following theorem, which formalizes the fact that mining the
upper and lower support-confidence borders identifies the optimal
rules according to metrics such as entropy gain, gini, and chi-
squared value. Conveniently, an algorithm specifically optimized
for mining the upper border can be used without modification to
mine the lower border by simply negating the consequent of the
given instance, as stated by the subsequent lemma.

THEOREM 3.8: Given instance , if is
defined over the values given by a convex function over
rules where:
(1) and , and
(2) is minimum at ,
then an -optimal rule appears in either (a) any optimal set
where , or (b) any -optimal set
where .

LEMMA 3.9: Given an instance , any
-optimal set for (where

evaluates to true only when evaluates to false) is also an
-optimal set.

Proof Idea: Note that . Thus,
maximizing the confidence of minimizes the confi-
dence of .

Before ending this section we consider one practical issue -- that of
result visualization. Note that the support-confidence borders as
displayed in Figure 1 provide an excellent means by which optimal
sets of rules may be visualized. Each border clearly illustrates the
trade-off between the support and confidence. Additionally, one
can imagine the result visualizer color-coding points along these
borders that are optimal according to the various interestingness
metrics, e.g. blue for Laplace value, red for chi-squared value,
green for entropy gain, and so on. The result of modifying
minimum support or confidence on the optimal rules could be
displayed in real-time as the user drags a marker along either axis

in order to specify a minimum bound.

3.3 Practical Implications for Mining Optimal Con-
junctions

In this section we present and evaluate an algorithm that efficiently
mines an optimal set of conjunctions according to (and
due to Lemma 3.9) from many real-world categorical data-sets,
without requiring any constraints to be specified by the user. We
also demonstrate that the number of rules produced by this
algorithm for a given instance is typically quite manageable -- on
the order of a few hundred at most. We address the specific
problem of mining optimal conjunctions within categorically
valued data, where each condition in is simply a test of whether
the given input record contains a particular attribute/value pair,
excluding values from a designated class column. Values from the
designated class column are used as consequents. While our
algorithm requires no minimums on support or confidence, if they
are specified, they can be exploited for better performance. Space
constraints prohibit a full explanation of the workings of this
algorithm, so we highlight only the most important features here.
A complete description appears in an extended draft [7].

The algorithm we use is a variant of Dense-Miner from [6], which
is a constraint-based rule miner suitable for use on large and dense
data-sets. In Dense-Miner, the rule mining problem is framed as a
set-enumeration tree search problem [21] where each node of the
tree enumerates a unique element of . Dense-Miner returns
every rule that satisfies the input constraints, which include
minimum support and confidence. We modified Dense-Miner to
instead maintain only the set of rules that are potentially optimal
at any given point during its execution. Whenever a rule is
enumerated by a node and found to satisfy the input constraints, it
is compared against every rule presently in . If is better than or
incomparable to every rule already in according to the partial
order, then rule is added to . Also, any rule in that is worse
than is removed. Given this policy, assuming the tree enumerates
every subset of , upon termination, is an optimal set.

Because an algorithm which enumerates every subset would be
unacceptably inefficient, we use pruning strategies that greatly
reduce the search space without compromising completeness.
These strategies use Dense-Miner’s pruning functions (appearing
in Appendix B), which bound the confidence and support of any
rule that can be enumerated by a descendent of a given node. To
see how these functions are applied in our variant of the algorithm,
consider a node with support bound and confidence bound .
To see if can be pruned, the algorithm determines if there exists
a rule in such that , where is some imaginary rule
with support and confidence . Given such a rule, if any
descendent of enumerates an optimal rule, then it must be
equivalent to . This equivalence class is already represented in

, so there is no need to enumerate these descendents, and can
be pruned.

This algorithm differs from Dense-Miner in only two additional
ways. First, we allow the algorithm to perform a set-oriented best-
first search of the tree instead of a purely breadth-first search.
Dense-miner uses a breadth-first search since this limits the
number of database passes required to the height of the search tree.
In the context of optimized rule mining, a breadth-first strategy can
be inefficient because pruning improves as better rules are found,
and good rules sometimes arise only at the deeper levels. A pure
best-first search requires a database pass for each node in the tree,
which would be unacceptable for large data-sets. Instead, we
process several of the best nodes (at most 5000 in our
implementation) with each database pass in order to reduce the

δ
x2 0=

x1 y1,() x2 δ– y2,(),[]
x3 y3,() x3 y3

x3 y3 f
x3 y3,() f x1 y1,() f x2 δ– y2,()≤

x

y

Figure 2. Illustration of case (2) from Lemma 3.6.

conf(x,y) = c

x2 δ– y2,()

x2 y2,()
x1 y1,()

x3 y3,()

f x y,()
conf x y,() c= f x y,() conf x y,()

y conf x y,() c≤ y
conf x y,() A= A c≤

I U D t≤ C N, , , ,〈 〉= t≤
f x y,()

A C→
x supA() supA C∪()–= y supA C∪()=
f x y,() conf x y,() supC() D⁄=

I Isc
Isc U D sc≤ C N, , , ,〈 〉= Is c¬
Is c¬ U D s c¬≤ C N, , , ,〈 〉=

Is c¬ U D s c¬≤ C N, , , ,〈 〉=
Isc Isc U D sc≤ C¬ N, , , ,〈 〉= C¬

C
Is c¬

conf A C¬→() 1 conf A C→()–=
A C¬→

A C→

 sc≤ s c¬≤

U

2U

R
r

R r
R

r R R
r

U R

g s c
g

r R ri sc≤ r ri
s c
g

r
R g

number of database passes while still substantially reducing the
search space. For this purpose, a node is better than another if the
rule it enumerates has a higher confidence value.

The remaining modification is the incorporation of inclusive
pruning as proposed by Webb [23]. This pruning strategy avoids
enumerating a rule when it can be determined that its antecedent
can be extended with an additional condition without affecting the
support of the rule. In the absence of item constraints, this
optimization prunes many rules that are either non-optimal or
equivalent to some other optimal rule to be enumerated.
Unfortunately, when there are item constraints in (e.g. “rules
must contain fewer than conditions”), this pruning strategy
cannot be trivially applied without compromising completeness, so
it must be disabled. Full details of this pruning strategy are
provided in Appendix B.

We evaluated our algorithm on the larger of the categorical data-
sets from the Irvine machine learning database repository,6

including chess, mushroom, letter, connect-4, and dna. We also
used the pums data-set from [6] which is compiled from census
data (a similar data-set was used in [8]). For the Irvine data-sets,
we used each value of the designated class column as the
consequents. For the pums data-set, we used the values of the
RELAT1 column (13 in all)7. Each of these data-sets is known to
be difficult for constraint-based rule mining algorithms such as
Apriori, even when specifying a strong minimum support
constraint [4,6,8].

Experiments were performed on an IBM IntelliStation with 400
MHZ Intel Pentium-II processor and 128 MBytes of main memory.
Execution time and the number of rules returned by the algorithm
appear in Table 1; characteristics of each data-set appear in Table
2. For the Irvine data-sets, with the exception of connect-4, our
algorithm identified an optimal set of rules within 30 seconds in
every case, with many runs requiring less than 1 second. Connect-4
was the most difficult of the data-sets for two reasons. First, it has
substantially more records and more columns than many of the
other data-sets. But a stronger contributor to this discrepancy was
the fact that rules with high confidence within the connect-4 data-
set have very low support. For example, with the “tie” class as the
consequent, rules with 100% confidence have a support of at most
14 records. This property greatly reduces pruning effectiveness,
resulting in almost one hour of execution time given this
consequent. In cases like these, modest settings of the minimum
support or confidence constraint can be used to improve runtime
considerably. For example, a minimum support of 676 records (1%
of the data-set) reduces execution time to 6 minutes.

The number of rules in each optimal set was on the order of a few
hundred at most. Of the Irvine data-sets, connect-4 contained the
most optimal rules, with 216 for win, 171 for tie, and 465 for lose.
We plot the upper support-confidence border for each of these
consequents in Figure 3. Rule support is normalized according to
consequent support so that each border ranges from 0 to 100%
along the axis.

4. PC-Optimality
4.1 Definition
While sc-optimality is a useful concept, it tends to produce rules
that primarily characterize only a specific subset of the population

of interest (by population of interest, we mean the set of records for
which condition evaluates to true). In this section, we propose
another partial order with the goal of remedying this deficiency.
First, the population of a rule is simply the set of records
from data-set for which both and evaluate to true. We
denote the population of a rule as . Clearly then,

. A rule which contains some record within its
population is said to characterize .

6 http://www.ics.uci.edu/~mlearn/MLRepository.html
7 This data-set is available in the form used in these experiments through:
http://www.almaden.ibm.com/cs/quest
The values 1-13 for the RELAT1 column correspond to items 1-13 in the
apriori binary format of this data.

N
k

x

Data-set Consequent Time (sec) # of Rules
chess win <1 60

nowin <1 41
connect-4 win 642 216

draw 3066 171
loss 1108 465

letter A-Z 18 322
dna EI 20 9

IE 23 15
N <1 9

mushroom poisonous <1 12
edible <1 7

pums 1 740 324
2 204 702
3 509 267
4 174 152
5 46 91
6 19 81
7 50 183
8 270 210
9 843 383
10 572 424
11 88 165
12 12 11
13 22 102

Table 1. Execution time and number of rules returned.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
o
n
f
i
d
e
n
c
e

(
%
)

sup(r)/sup(C) (%)

win
tie

lose

Figure 3. Upper support/confidence borders for Connect-4.

C

A C→
D A C

r pop r()
pop r() supr()= t

t

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.almaden.ibm.com/cs/quest

Consider now the partial order on rules where if and
only if:

• , or
• .
Two rules are equivalent according to this partial order if their
population sets are identical and their confidence values are equal.
One can analogously define the partial order where

 if and only if:

• or
• .

4.2 Theoretical Implications
It is easy to see that is implied by (and by), so
all the claims from Section 3 also hold with respect to pc-
optimality. Note that results in more incomparable rule pairs
than due to the population subsumption requirement. This
implies there will be many more rules in a pc-optimal set compared
to an sc-optimal set. The consequence of these additional rules, as
formalized by the observation below, is that a pc-optimal set
always contains a rule that is optimal with respect to any of the
previous interestingness metrics, and further with respect to any
constraint that requires the rules to characterize a given subset of
the population of interest.

OBSERVATION 4.1: Given an instance where
(1) is implied by , and
(2) has a constraint on rules stating that for

a given subset of the population of interest,
an -optimal rule appears in any -optimal set where

.

We note that this generalization of sc-optimality is quite broad.
Given the large number of rules that can appear in a pc-optimal set
(see next subsection), a more controlled generalization might be
desirable. One idea is to have the rule set support any constraint
that requires a rule to characterize a given member (in place of a
subset) of the population of interest. This would still guarantee a
broad characterization, but potentially with much fewer rules. This
notion designates a rule as uninteresting if there exists some set
of rules such that (1) each rule in satisfies the input
constraints, (2) every member of is characterized by at least
one rule in and (3) each rule in is equal to or better than
according to . (Note that pc-optimality designates a rule as
uninteresting only if there exists such a set containing exactly
one rule.) This notion of uninterestingness cannot, to our
knowledge, be expressed using a partial order on rules. Instead, we
are examining how the concept of pc-optimality combined with
constraints can successfully express (and exploit) this notion.

4.3 Practical Implications for Mining Optimal Con-
junctions

Producing an algorithm that can efficiently mine an optimal set of
conjunctions with respect to may seem an impossible
proposition in large data-sets due to the need to verify subsumption

between rule populations over many rules. However, we will show
that we can verify the relationships induced by the partial order
“syntactically” in many cases; that is, by checking the conditions
of the rules along with support and confidence, instead of
examining the set of database records that comprise their
populations. Keep in mind that in this subsection we are restricting
attention to mining optimal conjunctions. In typical formulations
of mining optimized disjunctions (e.g. [12,20]), syntactic checks
for population subsumption simply require geometrically
comparing the regions represented by the base conditions.

DEFINITION (A-MAXIMAL): A rule is a-maximal if there
is no rule such that and

.

Note that the definition of an a-maximal rule is such that it need
not satisfy the input constraints. The intuition behind a-maximality
(“antecedent” maximality) is that an a-maximal rule cannot have
its antecedent enlarged without strictly reducing its population.

Given a rule , we denote an a-maximal rule that has the same
population of as . Lemma 4.2a implies there is only one
such rule, which means that is in fact a function. The
purpose of this function is to provide a concise, canonical
description of a rule’s population that allows for efficiently
checking the subsumption condition (Lemma 4.2). In turn, this
provides a syntactic method for comparing rules with
(Theorem 4.3).

LEMMA 4.2A:
B:

Proof: The direction is immediate for both cases, so we prove
the direction. Suppose the claims are false and consider the
rule which is formed by taking the union of the antecedents
from and . We establish each claim by con-
tradiction.

For claim A, if , then clearly has the
same population as and . Since we assume the claim is
false, we have that is different than . Given
this, either or . But
since all three rules have the same population, this leads to the
contradiction that either or is not a-maxi-
mal.

For claim B, if , then .
As a consequence, we must have that by
claim A from above. Since we assume the claim is false, we
must in addition have that or

. The case where they are equal is an
immediate contradiction due to claim A. For the case where

, note that , which
contradicts the fact that .

THEOREM 4.3 A: if and only if:
(1) and , or
(2) and .
B: if and only if

 and .

These facts cannot be trivially applied in an efficient manner since
computing requires scanning the data-set (an algorithm
for this purpose appears in Figure 4). Instead, we describe pruning
optimizations which can be incorporated into a rule miner to avoid
generating many rules that are not pc-optimal. A post-processing
phase then computes for every rule identified in one final
pass over the database, and this information is used to efficiently
identify any remaining non-optimal rules.

Data-set # of Rows # of Columns
chess 3,196 37
connect-4 67,557 43
dna 3,124 61
letter 20,000 17
mushroom 8,124 23
pums 49,046 74

Table 2. Number of rows and columns in each data-set.

 pc≤ r1 pc< r2

pop r1() pop r2()⊆ ∧ conf r1() conf r2()<
pop r1() pop r2()⊂ ∧ conf r1() conf r2()≤

 p c¬≤
r1 p c¬< r2

pop r1() pop r2() conf r1() conf r2()>∧⊆
pop r1() pop r2() conf r1() conf r2()≥∧⊂

 sc≤ pc≤ s c¬≤ p c¬≤

 pc≤
 sc≤

I U D t≤ C N, , , ,〈 〉=
 t≤ pc≤

N n r P pop r()⊆
P

I Ipc
Ipc U D pc≤ C N n{ }–, , , ,〈 〉=

t
P

r
R R

pop r()
R R r

 sc≤
R

 pc≤

A1 C→
A2 C→ A1 A2⊂

supA1 C→() supA2 C→()=

r
r amaxr()

amax()

 pc≤

pop r1() pop r2()= ⇔ amaxr1() amaxr2()=
pop r1() pop r2()⊂ ⇔ amaxr1() amaxr2()⊃

⇐
⇒
r3
amaxr1() amaxr2()

pop r1() pop r2()= r3
r1 r2

amaxr1() amaxr2()
amaxr1() amaxr3()⊂ amaxr2() amaxr3()⊂

amaxr1() amaxr2()

pop r1() pop r2()⊂ pop r3() pop r1()=
amaxr1() amaxr3()=

amaxr1() amaxr2()⊂
amaxr1() amaxr2()=

amaxr1() amaxr2()⊂ amaxr3() amaxr2()⊂
r3 amaxr1() amaxr2()∪=

r1 pc< r2
conf r1() conf r2()< amaxr1() amaxr2()⊇
conf r1() conf r2()≤ amaxr1() amaxr2()⊃

r1 pc= r2
conf r1() conf r2()= amaxr1() amaxr2()=

amaxr()

amaxr()

OBSERVATION 4.4: Given an instance , a
rule cannot be -optimal if there exists some rule

 where , satisfies the input constraints,
and .

Using the terminology from [6], this observation simply states that
a pc-optimal rule must have a non-negative improvement value. We
can in fact require that improvement be positive since we only need
one member of each equivalence class. The Dense-Miner
algorithm already provides pruning functions that bound the
improvement value of any rule derivable from a given node. We
thus modify Dense-Miner to prune nodes whose improvement
bound is 0 (see Appendix B for the simplified pruning functions
that can be used for this special case). We also again exploit
Webb’s inclusive pruning strategy for the case where there are no
item constraints in .

We can now fully describe an algorithm for mining an -optimal
set of rules without performing any explicit subsumption checks
between rule populations (Figure 5). We use the above-described
variant of Dense-Miner to implement step 1 of this algorithm. Step
3 applies Theorem 4.3a to identify non-optimal rules for removal.
This step requires we first associate each rule with its a-maximal
rule (step 2). To find the a-maximal rules, we apply the algorithm
in Figure 4 for each rule in , using a single shared database scan.
For a data-set such as connect-4, our implementation of this step
requires less than 3 seconds for a set with up to 10,000 rules.
Finally, step 4 applies Theorem 4.3b in order to identify equivalent
rules so that there is only one representative from each equivalence
class in the returned result.

This algorithm could be simplified slightly when the input
constraints have the property that satisfies
whenever does. In this case, the set could be returned

immediately following step 2 (since is a set, we assume it
contains no duplicates). However, some common rule constraints
(e.g. “a rule must have fewer than conditions”) do not have this
property.

In practice, we find that the number of rules returned by this
algorithm is considerably larger than that of the algorithm for
mining sc-optimal sets. On most data-sets, rule constraints such as
minimum support or confidence must be specified to control the
size of the output as well as execution time. For the execution
times reported in Table 3, the minimum support constraint was set
to ensure that each rule’s population is at least 5% of the
population of interest. For the pums data-set, this constraint was
not sufficiently strong to control combinatorial explosion. We
therefore simplified the data-set by removing values which appear
in 80% or more of the records (the resulting data-set is known as
pumsb*, and was used in [5]). We conclude that pc-optimal sets of
rules are useful primarily on data-sets where the density is
somewhat subdued, or when the user is capable of specifying
strong rule constraints prior to mining.

5. Conclusions
We have defined a new optimized rule mining problem that allows
a partial order in place of the typical total order on rules. We have
also shown that solving this optimized rule mining problem with
respect to a particular partial order (and in some cases its
analog) is guaranteed to identify a most-interesting rule
according to several interestingness metrics including support,
confidence, gain, laplace value, conviction, lift, entropy gain, gini,
and chi-squared value. In practice, identifying such an optimal set
of conjunctive rules can be done efficiently, and the number of
rules in such a set is typically small enough to be easily browsed by

Ipc U D pc≤ C N, , , ,〈 〉=
A1 C→ Ipc

A2 C→ A2 A1⊂ A2
conf A2() conf A1()>

N

INPUT: a rule and a data-set

OUTPUT:

1. Find the first record in that is a member of the
population of . Initialize a set to contain those
conditions of that evaluate to true on this record, but are
not already in .

2. For each remaining record in which is in the population
of , remove any condition in which evaluates to false
on this record.

3. Add the conditions in to the antecedent of and return
the result.

r D

amaxr()

D
r A

U
r

D
r A

A r

Figure 4. Algorithm for computing .amaxr()

INPUT:

OUTPUT: An -optimal set.

1. Find all rules with positive improvement among those
satisfying the input constraints. Call this set of rules .

2. For each rule in , associate with and put
 into a set .

3. Remove any rule from if there exists some
such that such that according to Theorem 4.3a.

4. For each rule , if there is more than one rule in
 such that , then remove all but one of

them from .

5. Return .

Ipc U D pc≤ C N, , , ,〈 〉=

Ipc

R

r R r amaxr()
amaxr() Ra

r1 R r2 R∈
r1 pc< r2

ra Ra∈ r
R amaxr() ra=

R

R

Figure 5. Algorithm for mining a pc-optimal set of conjunctions.

Ipc

R

N amaxr() N
r Ra

Ra

k

Data-set Consequent Time (sec) # of Rules
chess win 2,821 236,735

nowin 504 42,187
connect-4 win 19,992 178,678

draw 18,123 119,984
loss 34,377 460,444

letter A-Z 65 37,850
dna EI 64 55,347

IE 46 49,505
N 53 9,071

mushroom poisonous 1 217
edible 3 389

pumsb* 1 1,058 84,594
2 829 33,443
3 305 14,927
4 770 28,553
5 308 21,244
6 59 5,717
7 412 15,474
8 428 22,992
9 3,079 160,908
10 3,857 175,061
11 118 5,701
12 12 991
13 482 59,088

Table 3. Execution time and number of rules returned.

 sc≤
 s c¬≤

an end-user. We lastly generalized this concept using another
partial order in order to ensure that the entire population of
interest is well-characterized. This generalization defines a set of
rules that contains the most interesting rule according to any of the
above metrics, even if one requires this rule to characterize a
specific subset of the population of interest.

These techniques can be used to facilitate interactivity in the
process of mining most-interesting rules. After mining an optimal
set of rules according to the first partial order, the user can examine
the most-interesting rule according to any of the supported
interestingness metrics without additional querying or mining of
the database. Minimum support and confidence can also be
modified and the effects immediately witnessed. After mining an
optimal set of rules according to the second partial order, in
addition to the above, the user can quickly find the most-interesting
rule that characterizes any given subset of the population of
interest. This extension overcomes the deficiency of most
optimized rule miners where much of the population of interest
may be poorly characterized or completely uncharacterized by the
mined rule(s).

Acknowledgments
We are indebted to Ramakrishnan Srikant and Dimitrios
Gunopulos for their helpful suggestions and assistance.

References
[1] Agrawal, R.; Imielinski, T.; and Swami, A. 1993. Mining

Associations between Sets of Items in Massive Databases. In
Proc. of the 1993 ACM-SIGMOD Int’l Conf. on Management
of Data, 207-216.

[2] Agrawal, R.; Mannila, H.; Srikant, R.; Toivonen, H.; and
Verkamo, A. I. 1996. Fast Discovery of Association Rules. In
Advances in Knowledge Discovery and Data Mining, AAAI
Press, 307-328.

[3] Ali, K.; Manganaris, S.; and Srikant, R. 1997. Partial Classifi-
cation using Association Rules. In Proc. of the 3rd Int'l Conf.
on Knowledge Discovery in Databases and Data Mining,
115-118.

[4] Bayardo, R. J. 1997. Brute-Force Mining of High-Confidence
Classification Rules. In Proc. of the Third Int’l Conf. on
Knowledge Discovery and Data Mining, 123-126.

[5] Bayardo, R. J. 1998. Efficiently Mining Long Patterns from
Databases. In Proc. of the 1998 ACM-SIGMOD Int’l Conf. on
Management of Data, 85-93.

[6] Bayardo, R. J.; Agrawal, R.; and Gunopulos, D. 1999. Con-
straint-Based Rule Mining in Large, Dense Databases. In
Proc. of the 15th Int’l Conf. on Data Engineering, 188-197.

[7] Bayardo, R. J. and Agrawal, R. 1999. Mining the Most Inter-
esting Rules. IBM Research Report. Available from:
http://www.almaden.ibm.com/cs/quest

[8] Brin, S.; Motwani, R.; Ullman, J.; and Tsur, S. 1997.
Dynamic Itemset Counting and Implication Rules for Market
Basket Data. In Proc. of the 1997 ACM-SIGMOD Int’l Conf.
on the Management of Data, 255-264.

[9] Clark, P. and Boswell, P. 1991. Rule Induction with CN2:
Some Recent Improvements. In Machine Learning: Proc. of
the Fifth European Conference, 151-163.

[10] Dhar, V. and Tuzhilin, A. 1993. Abstract-driven pattern dis-
covery in databases. IEEE Transactions on Knowledge and
Data Engineering, 5(6).

[11] Eggleston, H. G. 1963. Convexity. Cambridge Tracts in Math-
ematics and Mathematical Physics, no. 47. Smithies, F. and
Todd, J. A. (eds.). Cambridge University Press.

[12] Fukuda, T.; Morimoto, Y.; Morishita, S.; and Tokuyama, T.
1996. Data Mining using Two-Dimensional Optimized Asso-
ciation Rules: Scheme, Algorithms, and Visualization. In
Proc. of the 1996 ACM-SIGMOD Int’l Conf. on the Manage-
ment of Data, 13-23.

[13] Goethals, B. and Van den Bussche, J. 1999. A Priori Versus A
Posteriori Filtering of Association Rules. In Proc. of the 1999
ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, paper 3.

[14] International Business Machines, 1996. IBM Intelligent Miner
User’s Guide, Version 1, Release 1.

[15] Mitchell, T. M. 1997. Machine Learning. McGraw-Hill, Inc.
[16] Morimoto, Y.; Fukuda, T.; Matsuzawa, H.; Tokuyama, T.; and

Yoda, K. 1998. Algorithms for Mining Association Rules for
Binary Segmentations of Huge Categorical Databases. In
Proc. of the 24th Very Large Data Bases Conf., 380-391.

[17] Morishita, S. 1998. On Classification and Regression. In
Proc. of the First Int’l Conf. on Discovery Science -- Lecture
Notes in Artificial Intelligence 1532:40-57.

[18] Nakaya, A. and Morishita, S. 1999. Fast Parallel Search for
Correlated Association Rules. Unpublished manuscript.

[19] Piatetsky-Shapiro, G. 1991. Discovery, Analysis, and Presen-
tation of Strong Rules. Chapter 13 of Knowledge Discovery in
Databases, AAAI/MIT Press, 1991.

[20] Rastogi, R. and Shim, K. 1998. Mining Optimized Associa-
tion Rules with Categorical and Numeric Attributes. In Proc.
of the 14th Int’l Conf. on Data Engineering, 503-512.

[21] Rymon, R. 1992. Search through Systematic Set Enumera-
tion. In Proc. of Third Int’l Conf. on Principles of Knowledge
Representation and Reasoning, 539-550.

[22] Srikant, R.; Vu, Q.; and Agrawal, R. 1997. Mining Associa-
tion Rules with Item Constraints. In Proc. of the Third Int'l
Conf. on Knowledge Discovery in Databases and Data Min-
ing, 67-73.

[23] Webb, G. I. 1996. Inclusive Pruning: A New Class of Pruning
Axiom for Unordered Search and its Application to Classifi-
cation Learning. In Proc. of the 1996 Australian Computer
Science Conference, 1-10.

[24] Webb, G. I. 1995. OPUS: An Efficient Admissible Algorithm
for Unordered Search. Journal of Artificial Intelligence
Research, 3:431-465.

Appendix A
Here we provide definitions for the gini, entropy gain, and chi-
squared rule value functions. For a given condition , we denote
the fraction of records that satisfy the consequent condition
among those that satisfy as , and the fraction of records
that do not satisfy the consequent condition among those that
satisfy as . Note then that:

 and

 pc≤

A
C

A p A()

A p A()

p A() sup A C→()
sup A()

----------------------------= p A() sup A() sup A C→()–
supA()

--=

http://www.almaden.ibm.com/cs/quest
http://www.almaden.ibm.com/cs/quest

Since and are constant for a given instance of the problem,
terms such as are constants. Any of the above
variable terms can be expressed as functions of

 and , and hence so
can the functions themselves. For example, ,

, , ,
and so on.

Appendix B
Set-Enumeration Tree Search.

The set-enumeration tree search framework is a systematic and
complete tree expansion procedure for searching through the
power set of a given set . The idea is to first impose a total order
on the elements of . The root node of the tree will enumerate the
empty set. The children of a node will enumerate those sets that
can be formed by appending a single element of to , with the
restriction that this single element must follow every element
already in according to the total order. For example, a fully-
expanded set-enumeration tree over a set of four elements (where
each element of the set is denoted by its position in the ordering)
appears in Figure 6.

To facilitate pruning, we use a node representation called a group
where the set enumerated by a node is called the head and
denoted . The set of viable elements of which can be
appended to in order to form a child is called the tail and
denoted . Making the tail elements explicit enables
optimizations such as element reordering (for dynamic tree
rearrangement) and tail pruning. Element reordering involves
locally changing the total order on at each node in the tree to
maximize pruning effectiveness. Tail pruning involves removing
elements from the tail if they cannot possibly be part of any
solution in the sub-tree rooted at the node. This directly reduces the
search space, and indirectly reduces the search space by improving
the bounds we compute on values such as the confidence of any
rule that can be enumerated by a descendent of the node.

Pruning with Confidence, Support, and Improvement

We say a rule (which we represent using only its antecedent
since the consequent it fixed) is derivable from a group if

, and . By definition, any rule that can be
enumerated by a descendent of in the set-enumeration tree is
also derivable from . From [6] we have that:
• The function provides an upper-bound on

the confidence of any conjunctive rule derivable from a given
group , where and are non-negative integers such that

 and .
• The value of from above provides an upper-bound on support.
• If the confidence bound given by from above for some group

 is less than or equal to the confidence of any rule enumer-
ated thus far such that is a subset of and satisfies the
input constraints, then the maximum improvement of any deriv-
able rule is zero.

• If the following value is equal to zero, then the maximum
improvement of any derivable rule is zero:

We refer the reader to [6] for details on how to compute the above
values economically given that the data-set is large, and how to
heuristically reorder the elements of in order to ensure these
functions have plenty of pruning opportunities.

Inclusive Pruning
Webb’s inclusive pruning strategy [23] moves a subset of the tail
of a group into its head whenever the following fact can be
established: if some solution is derivable from , then at least one
of the solutions derivable from is a superset of . For example,
in the case of mining optimized conjunctions according to the
Laplace function (and many of the other metrics we have examined
including our partial orders), suppose

 for some element in
. Ignoring the effects of rule constraints, if some rule

derivable from is optimal, then so is the rule , which is
also derivable from . If one or more such elements are found in
the tail of some node, instead of expanding its children, these
elements can all be moved into the head to form a new node that
replaces it.

Some constraints may unfortunately prohibit straightforward
application of this particular inclusive pruning strategy. For
example, an item constraint may disallow from participating in a
solution when combined with some other items from and

. Another problematic constraint is one which bounds the size
of a rule’s antecedent. Luckily, work-arounds are typically
possible. For example, in the case where a bound is specified on
the number of base conditions that may appear in an antecedent,
the strategy can be applied safely whenever .

gini A C→() = 1 p ∅()2 p ∅()2+[]–

supA()

D
---------------- 1 p A()2 p A()2+[]–()–

sup A¬()

D
-------------------- 1 p A¬()2 p A¬()2+[]–()–

ent A C→() = p ∅()log p ∅()() p ∅()log p ∅()()+[]–

supA()

D
---------------- p A()log p A()() p A()log p A()()+[]–

sup A¬()

D
-------------------- p A¬()log p A¬()() p A¬()log p A¬()()+[]–

chi2 A C→() =

supA() p A() p ∅()–[]2 sup A¬() p A¬() p ∅()–[]2–
p ∅()

 supA() p A() p ∅()–[]2 sup A¬() p A¬() p ∅()–[]2–
p ∅()

---+

C D
p ∅() supC() D⁄=

x supA() supA C→()–= y supA C→()=
supA() y x+=

sup A¬() D y x+()–= p A() y y x+()⁄= p A() x y x+()⁄=

{}

1 2

1,2

1,2,3

1,2,3,4

1,3

1,3,4

1,4 2,3

2,3,4

2,4

3

3,4

4

1,2,4

Figure 6. A complete set-enumeration tree over a 4 item set.

U
U

N
U N

N

g
h g() U

h g()
t g()

U

r
g

h g() r⊂ r h g() t g()∪⊆
g

g
fc x y,() x x y+()⁄=

g x y
y suph g() t g() C¬→∪()≤ x suph g() C→()≥

x
fc

g r
r h g() r

β min u∀ h g()∈ sup h g() u{ }–() u¬{ } C¬→∪(),()=

U

T
g

g
g T

suph g() C→() suph g() u{ } C→∪()= u
t g() r

g r u{ }∪
g

u
h g()

t g()

k

h g() t g()∪ k≤

	1. Introduction
	2. Preliminaries
	2.1 Generic Problem Statement
	2.2 Previous Algorithms for the Optimized Rule Mining Problem
	2.3 Mining Optimized Rules under Partial Orders
	2.4 Monotonicity

	3. SC-Optimality
	3.1 Definition
	3.2 Theoretical Implications
	3.3 Practical Implications for Mining Optimal Conjunctions

	4. PC-Optimality
	4.1 Definition
	4.2 Theoretical Implications
	4.3 Practical Implications for Mining Optimal Conjunctions

	5. Conclusions
	References
	Appendix A
	Appendix B

