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Abstract

We present parallel algorithms for building decision-tree classi�ers on shared-memory multi-
processor (SMP) systems. The proposed algorithms span the gamut of data and task parallelism.
The data parallelism is based on attribute scheduling among processors. This basic scheme is
extended with task pipelining and dynamic load balancing to yield faster implementations. The
task parallel approach uses dynamic subtree partitioning among processors. We evaluate the
performance of these algorithms on two machine con�gurations: one in which data is too large
to �t in memory and must be paged from a local disk as needed and the other in which mem-
ory is su�ciently large to cache the whole data. This performance evaluation shows that the
construction of a decision-tree classi�er can be e�ectively parallelized on an SMP machine with
good speedup. For the local disk con�guration, the speedup ranged from 2.97 to 3.86 for the
build phase and from 2.20 to 3.67 for the total time on a 4-processor SMP. For the large memory
con�guration, the range of speedup was from 5.36 to 6.67 for the build phase and from 3.07 to
5.98 for the total time on an 8-processor SMP.

1 Introduction

Classi�cation is recognized to be a primary data mining task [2] [9]. The input to a classi�cation

system consists of a set of example tuples, called a training set, where each tuple consists of several

attributes. Attributes can be continuous, coming from an ordered domain, or categorical, coming

from an unordered domain. One of the attributes, called the class attribute, indicates the class to

which each example belongs. The goal of classi�cation is to induce a model from the training set,

that can be used to predict the class of a new tuple that does not have a class label. Classi�cation

has applications in diverse �elds such as retail target marketing, customer retention, fraud detection,

and medical diagnosis [15].

Amongst the several classi�cation methods proposed over the years [20] [15], decision trees are

particularly suited for data mining applications [14]. Decision trees can be constructed relatively

fast compared to other methods and they are easy to interpret [17]. Moreover, trees can be con-

verted into SQL statements that can be used to access databases e�ciently [1]. Finally, decision-tree

classi�ers obtain similar, and often better, accuracy when compared to other classi�cation meth-

ods [15].

Prior to interest in classi�cation for database-centric data mining, it was tacitly assumed that

the training sets could �t in memory. Recent work has targeted the massive training sets usual in
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data mining. Developing classi�cation models using larger training sets can enable the development

of higher accuracy models. Various studies have con�rmed this hypothesis [5] [6] [7]. Examples of

recent classi�cation systems that can handle disk-resident data include SLIQ [14] and its extension

SPRINT [18].

A continuing trend in data management is the rapid and inexorable growth in the data that is

being collected. The development of high-performance scalable data mining tools must necessarily

rely on parallel computing techniques. Past research on parallel classi�cation has been focussed

on distributed-memory (also called shared-nothing) parallel machines. In such a machine, each

processor has private memory and local disks, and communicates with other processors only via

passing messages. An early work in this area examined parallelizing the ID3 decision-tree classi-

�er [10]. It assumed that the entire dataset could �t in memory and did not address issues such

as disk I/O. The algorithms required processor communication to evaluate any test condition for a

decision-tree node, limiting the number of possible tests the algorithm could consider. The Darwin

toolkit from Thinking Machines, a distributed-memory parallel machine, also contained a parallel

implementation of the CART decision-tree classi�er [4]. The details of this parallelization are not

available in published literature. The SPRINT algorithm mentioned earlier was also parallelized

on the IBM SP2 parallel distributed-memory machine and was shown to achieve good scaleup and

speedup [18].

Parallel distributed-memory machines are essential for scalable massive parallelism. However,

shared-memory multiprocessor systems (SMPs), often called shared-everything systems, are also

capable of delivering high performance for low to medium degree of parallelism at an economically

attractive price. SMP machines are the dominant types of parallel machines currently used in

industry. Individual nodes of even parallel distributed-memory machines are increasingly being

designed to be SMP nodes. For example, an IBM SP2 parallel system may consist of up to 64

high nodes, where each high node is an 8-way SMP system with PowerPC 604e processors [11].

A shared-memory system o�ers a single memory address space that all processors can access.

Processors communicate through shared variables in memory and are capable of accessing any

memory location. Synchronization is used to co-ordinate processes. Any processor can also access

any disk attached to the system. The programming architecture on these machines is quite di�erent

from that on distributed-memory machines.

This paper presents parallel algorithms for building decision-tree classi�ers on shared-memory

systems, the �rst such study to the best of our knowledge. The algorithms we propose span the

gamut of data and task parallelism. The data parallelism is based on attribute scheduling among

processors|scheduling work associated with di�erent attributes to di�erent processors. This basic

scheme is extended with task pipelining and dynamic load balancing to yield more e�cient schemes.

The task parallel approach uses dynamic subtree partitioning among processors. These algorithms

are evaluated on two SMP con�gurations: one in which data is too large to �t in memory and must

be paged from a local disk as needed and the other in which memory is su�ciently large to hold

the whole input data and all temporary �les. For the local disk con�guration, the speedup ranged

from 2.97 to 3.86 for the build phase and from 2.20 to 3.67 for the total time on a 4-processor SMP.

For the large memory con�guration, the range of speedup was from 5.36 to 6.67 for the build phase
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and from 3.07 to 5.98 for the total time on an 8-processor SMP.

It is fair to ask at this stage why one could not simply take the distributed-memory implemen-

tation of, say, SPRINT and adapt it to run on SMP machines. While it is feasible to do so, the

performance penalty can be substantial. Essentially, we would be simulating a distributed-memory

machine on an SMP machine by partitioning in software the main memory and disk storage. The

result would be ine�cient use of memory due to arti�cial replication of data structures. It would

make the load balancing unnecessarily complex. The communication software for the distributed-

memory system would also need e�cient mapping into SMP communication primitives. We will

discuss these points in detail later in the paper. Finally, the SMP architecture o�ers new challenges

and trade-o�s that are worth investigating in their own right.

The rest of the paper is organized as follows. In Section 2 we review how a decision-tree classi�er,

speci�cally SPRINT, is built on a uniprocessor machine. This section is adapted from [18]. Section 3

describes our new SMP algorithms based on various data and task parallelization schemes. We give

experimental results in Section 4 and conclude with a summary in Section 5.

2 Serial Classi�cation

A decision tree contains tree-structured nodes. Each node is either a leaf, indicating a class, or

a decision node, specifying some test on one or more attributes, with one branch or subtree for

each of the possible outcomes of the split test. Decision trees successively divide the set of training

examples until all the subsets consist of data belonging entirely, or predominantly, to a single class.

Figure 1(b) shows a decision-tree classi�er developed from the training set shown in Figure 1(a).

Tid Age Car Type Risk
0 23 family High
1 17 sports High
2 43 sports High
3 68 family Low
4 32 truck Low
5 20 family High

(a) Training Set

High

CarType in {sports}

High Low

Age < 27.5

(b) Decision Tree

Figure 1: Car insurance example.

A decision-tree classi�er is usually built in two phases [4] [17]: a growth phase and a prune

phase. The tree is grown using a divide and conquer approach. Given a set of training examples

S as input, there are two cases to consider. If all examples in S belong to a single class, then S

becomes a leaf. On the other hand, if S contains a mixture of examples from di�erent classes, the

input is partitioned into subsets that tend towards a single class. The partitioning is based on a

test on an attribute. The splits are usually binary as they lead to more accurate trees [4]. The

above process is recursively applied using the partitioned datasets as inputs.

The tree thus built can \over�t" the data. The goal of classi�cation is to predict new unseen

cases. The prune phase generalizes the tree by removing subtrees corresponding to statistical noise
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High
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1

5

0

Age < 27.5

Attribute lists for node 1 Attribute lists for node 2

Attribute lists for node 0

Figure 2: Splitting a node's attribute lists.

or variation that may be particular only to the training data. This phase requires access only to

the fully grown tree, while the tree growth phase usually requires multiple passes over the training

data, and as such is much more expensive. Previous studies from SLIQ suggest that usually less

than 1% of the total time needed to build a classi�er was spent in the prune phase [14].

The performance of the tree growth phase depends on two factors: 1) how to �nd split points that

de�ne node tests, and 2) having chosen a split point, how to partition the data. We now describe

how the above two steps are handled in serial SPRINT [18]. It builds the tree in a breadth-�rst order

and uses a one-time pre-sorting technique to reduce the cost of continuous attribute evaluation.

In contrast, the older, well-known CART [4] and C4.5 [17] classi�ers grow trees depth-�rst and

repeatedly sort the data at every node. Our SMP classi�er uses the same basic computations as

serial SPRINT, but the details of how computations are orchestrated are di�erent.

2.1 Attribute Lists

SPRINT initially creates a disk-based attribute list for each attribute in the data. Each entry in

the list consists of an attribute value, a class label, and a tuple identi�er (tid) of the corresponding

data tuple. We will refer to the elements of the attribute lists as \records" to avoid confusing them

with \tuples" in the training data. Initial lists for continuous attributes are sorted by attribute

value. The lists for categorical attributes stay in unsorted order. All the attribute lists are initially

associated with the root of the classi�cation tree. As the tree is grown and split into subtrees, the

attribute lists are also split. By preserving the order of records in the partitioned lists, no re-sorting

is required. Figure 2 shows an example of the initial sorted attribute lists associated with the root

of the tree for the training data in Figure 1 and also the resulting partitioned lists for the two

children.
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Histograms SPRINT uses histograms tabulating the class distributions of the records in an

attribute list to evaluate split points for the list. For continuous attributes, two histograms are

maintained: Cbelow keeps the distributions for records that have already been processed, and Cabove

for the rest. For categorical attributes one histogram, called the count matrix, is maintained for

the class distribution of a given attribute list. There is one set of histograms for each attribute

list assigned to every node in the tree. Cabove and count matrix are initialized as attribute lists are

created. Cbelow and Cabove are incrementally updated, as an attribute list for a continuous attribute

is processed.

2.2 Finding Good Split Points

The form of the split test used to partition the data depends on the type of the attribute used

in the split. Splits for a continuous attribute A are of the form value(A) < x where x is a value

in the domain of A. Splits for a categorical attribute A are of the form value(A) 2 X where

X � domain(A).

The split test is chosen to \best" divide the training records associated with a node. The

\goodness" of the split depends on how well it separates the classes. Several splitting indices have

been proposed in the past to evaluate the goodness of the split. SPRINT uses the gini index

for this purpose. For a data set S containing examples from n classes, gini(S) is de�ned to be

gini(S) = 1�
P
p2j where pj is the relative frequency of class j in S [4]. For continuous attributes,

the candidate split points are mid-points between every two consecutive attribute values in the

training data. For categorical attributes, all possible subsets of the attribute values are considered

as potential split points. (If the cardinality is too large a greedy subsetting algorithm is used.)

Note that the histograms contain the necessary information to evaluate a gini index.

2.3 Splitting the Data

Having found the winning split test for a node, the node is split into two children and the node's

attribute lists are divided into two (Figure 2). The attribute list for the winning attribute (Age

in our example at the root node) is partitioned simply by scanning the list and applying the split

test to each record. For the remaining \losing" attributes (CarType in our example) more work

is needed. While dividing the winning attribute a probe structure (bit mask or hash table) on the

tids is created, noting the child where a particular record belongs. While splitting other attribute

lists, this structure is consulted for each record to determine the child where this record should be

placed. If the probe structure is too big to �t in memory, the splitting takes multiple steps. In

each step only a portion of the attribute lists are partitioned.

Avoiding multiple attribute lists The attribute lists of each attribute are stored in disk �les.

As the tree is split, we would need to create new �les for the children, and delete the parent's �les.

Rather than creating a separate attribute list for each attribute for every node, only four physical

�les per attribute are needed. Since the splits are binary, there is one attribute �le for all leaves

that are \left" children and one �le for all leaves that are \right" children. There are two more �les
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L2

L1

L0
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R2 L3 R3

R7L7R6L6R5L5R4L4
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TOTAL FILES PER ATTRIBUTE: 32

CREATING NEW ATTRIBUTE FILES

L1

L0

R1

R0

L1

L0 L0

L1 L1 L1R1R1R1

L0 L0 L0 L0 L0 L0L0R0 R0 R0 R0 R0 R0 R0

REUSING ATTRIBUTE FILES

TOTAL FILES PER ATTRIBUTE: 4

R0

R1

L0 R0

Figure 3: Avoiding multiple attribute �les.

per attribute that serve as alternates. This scheme is illustrated in Figure 3. In fact, it is possible

to combine the records of di�erent attribute lists into one physical �le, thus requiring a total of 4

physical �les.

2.4 Parallel SPRINT on a Distributed-Memory Machine

The parallel implementation of SPRINT on IBM SP2 distributed-memory machine [18] is based

on what can be called record data parallelism. Briey, each processor is responsible for processing

roughly 1=P fraction of each attribute list. All processors synchronously construct one global

decision tree, one node at a time.

First, the training examples are distributed equally among all the processors. Each processor

then generates its own attribute list partitions in parallel by projecting each attribute from training

examples it was assigned. Lists for continuous attributes are further globally sorted using a parallel

sort [8] and repartitioned amongst processors into equal-sized contiguous sorted sections. Lists for

categorical attributes are not sorted/repartitioned. Note that the di�erent attribute lists belonging

to a processor no longer correspond to the same set of tids.

Finding split points in parallel SPRINT is similar to the serial case except that the class his-

tograms are �rst created locally for the attribute-list partitions owned by a processor and then

communicated between processors so that each processor has a global view of the class distribu-

tions. For a continuous attribute, each processor �nds the the best local split point using its local

partition of the attribute list and then the processors communicate to determine the overall best

split point for the attribute. The best split point for a categorical attribute is determined by a

co-ordinator using the global count matrix.

Each processor is responsible for splitting its own attribute-list partitions in the split phase.

However, since di�erent attribute lists belonging to a processor do not correspond to the same

set of tids, each processor needs to build a probe structure covering all the tids of records in an

attribute list. A processor accomplishes this by exchanging its own tids of the winning attribute

list and their corresponding left/right labels with that of all other processors.
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2.5 Why Not Simply Map the Distributed-Memory SPRINT?

Here, we examine why it is not attractive from a performance viewpoint to take the distributed-

memory parallel SPRINT algorithm platform and map it to the SMP systems. This mapping

would entail simulating a distributed-memory system on an SMP machine and creating software

controlled memory and disk partitions. Arti�cial partitioning of SMP memory to run distributed-

memory algorithm would result in very ine�cient use of SMP memory. Several data structure will

be unnecessarily replicated (e.g. probe structure) when a shared common data structure would

have been su�cient. The communication software of the distributed-memory system will also need

to be mapped into SMP communication primitives. In general, this approach is bringing in all

the complexity of programming a distributed-memory system without bene�ting from any of its

scalability advantages.

Speci�cally, we argue that the record data parallelism approach of parallel SPRINT is not well-

suited for an SMP system and will propose parallelization based on partitioning attributes. In

parallel SPRINT, the processors simultaneously grow the same node of a tree by working in parallel

on disjoint portions of the attribute list of a continuous attribute to �nd the best split point in their

respective portions. While these portions start o� being of equal size, as the tree grows and attribute

lists are split, the sizes can start varying substantially resulting in load imbalances. Performing

dynamic load balancing to correct this imbalance is quite complex and likely to introduce substantial

overhead. The data parallelism based on attribute partitioning that we will describe next allows a

processor to process all the attribute lists at the same level of tree for a given attribute. Assignment

of attributes to processors is dynamic|as soon as a processor becomes free, it grabs the next

available attribute simplifying load balancing.

3 Parallel Classi�cation on Shared-memory Systems (SMP)

We now turn our attention to the problem of building classi�cation trees in parallel on SMP

systems. We will only discuss the tree growth phase due to its compute and data-intensive nature.

Tree pruning is relatively inexpensive [14], as it requires access to only the decision-tree grown in

the training phase.

3.1 SMP Schemes

While building a decision-tree, there are three main steps that must be performed for each node at

each level of the tree: (i) Evaluate split points for each attribute (denoted as step E); (ii) Find the

winning split-point and construct a probe structure using the attribute list of the winning attribute

(denoted as step W); and (iii) Split all the attribute lists into two parts, one for each child, using

the probe structure (denoted as step S). Our parallel schemes will be described in terms of these

steps.

Our prototype implementation of these schemes uses the POSIX threads (pthread) standard [12].

A thread is a light weight process. It is a schedulable entity that has only those properties that are

required to ensure its independent ow of control, including the stack, scheduling properties, set
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of pending and blocking signals, and some thread-speci�c data. To keep the exposition simple, we

will not di�erentiate between threads and processes and pretend as if there is only one process per

processor.

We propose two approaches to building a tree classi�er in parallel: a data parallel approach and

a task parallel approach.

Data parallel In data parallelism the P processors work on distinct portions of the datasets and

synchronously construct the global decision tree. This approach exploits the intra-node parallelism,

i.e. that available within a decision tree node. We use attribute data parallelism: the attributes

are divided equally among the di�erent processors so that each processor is responsible for 1=P

attributes.

Task parallel The task parallelism exploits the inter-node parallelism: di�erent portions of the

decision tree are built in parallel among the processors.

3.2 Attribute Data Parallelism

We �rst describe the Moving-Window-K algorithm (MWK) based on attribute data parallelism.

For pedagogical reasons, we will introduce two intermediate schemes called BASIC and Fixed-

Window-K (FWK) and then evolve them to the more sophisticated MWK algorithm. MWK and

the two intermediate schemes utilize dynamic attribute scheduling. In a static attribute scheduling,

each process gets d=P attributes where d denotes the number of attributes. However, this static

partitioning is not particularly suited for classi�cation. Di�erent attributes may have di�erent

processing costs because of two reasons. First, there are two kinds of attributes { continuous and

categorical, and they use di�erent techniques to arrive at split tests. Second, even for attributes of

the same type, the computation depends on the distribution of the record values. For example, the

cardinality of the value set of a categorical attribute determines the cost of gini index evaluation.

These factors warrant a dynamic attribute partitioning approach.

3.2.1 The Basic Scheme (BASIC)

Figure 4 shows the pseudo-code for the BASIC scheme. A barrier represents a point of synchro-

nization. While a full tree is shown here, the tree generally may have a sparse irregular structure.

At each level a processor evaluates the assigned attributes, which is followed by a barrier.

Attribute scheduling Attributes are scheduled dynamically by using an attribute counter and

locking. A processor acquires the lock, grabs an attribute, increments the counter, and releases the

lock. This method achieves the same e�ect as self-scheduling [19], i.e., there is lock synchronization

per attribute.1

1For typical classi�cation problems with up to a few hundred attributes, this approach works �ne. For thousands of

attributes self-scheduling can generate too much unnecessary synchronization. The latter can be addressed by using

guided self-scheduling [16] or its extensions, where a processor grabs a dynamically shrinking chunk of remaining

attributes, thus minimizing the synchronization. Another possibility would be to use a�nity scheduling [13], where
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forall attributes in parallel (dynamic scheduling)

(master) thenif

forall attributes in parallel (dynamic scheduling)
each leaffor

each leaffor

for each leaf

// Starting with the root node execute the
// following code for each new tree level

barrier

split attributes (S)

evaluate attributes (E)

barrier

get winning attribute; form hash-probe (W)

L1

L0

R1

R0 R0

L1

L0 L0

L1 L1 L1 R1R1R1R1

BARRIER

P={0,1,2,3}

TOTAL FILES PER ATTRIBUTE: 4

Figure 4: The BASIC algorithm.

Finding split points (E) Since each attribute has its own set of four reusable attribute �les,

as long as no two processors work on the same attribute at the same time, there is no need for

�le access synchronization. To minimize barrier synchronization the tree is built in a breadth-�rst

manner. The advantage is that once a processor has been assigned an attribute, it can evaluate

the split points for that attribute for all the leaves in the current level. This way, each attribute

list is accessed only once sequentially during the evaluation for a level. Once all attributes have

been processed in this fashion, a single barrier ensures that all processors have reached the end

of the attribute evaluation phase. In contrast, depth-�rst tree growth would require a barrier

synchronization once per leaf, which could become a signi�cant source of overhead in large trees.

As each processor works independently on the entire attribute list, they can independently carry

out gini index evaluation to determine the best split point for each attribute assigned to it.

Hash probe construction (W) Once all the attributes of a leaf have been processed, each

processor will have what it considers to be the best split for that leaf. We now need to �nd the

best split point from among each processor's locally best split. We can then proceed to scan the

winning attribute's records and form the hash probe.

The breadth-�rst tree construction imposes some constraints on the hash probe construction.

We could keep separate hash tables for each leaf. If there is insu�cient memory to hold these hash

tables in memory, they would have to be written to disk. The size of each leaf's hash table can

be reduced by keeping only the smaller child's tids, since the other records must necessarily belong

to the other child. Another option is to maintain a global bit probe for all the current leaves. It

has as many bits as there are tuples in the training set. As the records for each leaf's winning

attribute are processed, the corresponding bit is set to reect whether the record should be written

to a left or right �le. A third approach is to maintain an index of valid tids of a leaf, and relabel

them starting from zero. Then each leaf can keep a separate bit probe.

BASIC uses the second approach for simplicity. Both the tasks of �nding the minimum split

value and bit probe construction are performed serially by a pre-designated master processor. This

step thus represents a potential bottleneck in this BASIC scheme, which we will eliminate later in

attention is paid to the location of the attribute lists so that accesses to local attribute lists are maximized.
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MWK. During the time the master computes the hash probe, the other processors enter a barrier

and go to sleep. Once the master �nishes, it also enters the barrier and wakes up the sleeping

processors, setting the stage for the splitting phase.

Attribute list splitting (S) The attribute list splitting phase proceeds in the same manner as

the evaluation. A processor dynamically grabs an attribute, scans its records, hashes on the tid

for the child node, and performs the split. Since the �les for each attribute are distinct there is no

read/write conict among the di�erent processors.

3.2.2 The Fixed-Window-K Scheme (FWK)

forall attributes in parallel (dynamic scheduling)

forall attributes in parallel (dynamic scheduling)
each leaffor

barrier

split attributes (S)

// Starting with the root node execute the
// following code for each new tree level

each block of K leavesfor

evaluate attributes (E)
each leaf ifor

barrierbarrier

get winning attribute; form hash-probe (W)

(last leaf of block)if

(last processor finishing on leaf i)if then

then
L1

L0

R1

R0 R0

L1

L0 L0

L1 L1 L1 R1R1R1R1

P={0,1,2,3}
BARRIER

TOTAL FILES PER ATTRIBUTE: (2*WindowSize) = 2*2 = 4

Figure 5: The FWK algorithm.

We noted above that the winning attribute hash probe construction phase W in BASIC is a

potential sequential bottleneck. The Fixed-Window-K (FWK) scheme shown in Figure 5 addresses

this problem. The basic idea is to overlap the W-phase with the E-phase of the next leaf at the

current level, thus realizing pipelining. The degree of overlap can be controlled by a parameter

K denoting the window of current overlapped leaves. Let Ei, Wi, and Si denote the evaluation,

winning hash construction, and partition steps for leaf i at a given level. Then for K = 2, we get

the overlap of W0 with E1. For K = 3, we get an overlap of W0 with fE1; E2g, and an overlap of

W1 with E2. For a general K, we get an overlap ofWi with fEi+1; � � � ; EK�1g, for all 1 � i � K� 1.

The attribute scheduling, split �nding, and partitioning remain the same. The di�erence is that

depending on the window size K, we group K leaves together. For each leaf within the K-block

(i.e., K leaves of the same group), we �rst evaluate all attributes. At the last leaf in each block

we perform a barrier synchronization to ensure that all evaluations for the current block have

completed. The hash probe for a leaf is constructed by the last processor to exit the evaluation for

that leaf. This ensures that no two processors access the hash probe at the same time.

Managing attribute �les There were a set of four reusable �les per attribute in the BASIC

scheme. However, if we are to allow overlapping of the hash probe construction step with the

evaluation step, which uses dynamic attribute scheduling within each leaf, we would require K
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L1
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L0 R0 L0 L0 L0R0 R0 R0SIMPLE SCHEME:

NEXT LEVEL

CURRENT LEVEL

RELABEL SCHEME: L0 R0 L0 R0 L0-- -- --

Figure 6: Scheduling attribute �les.

distinct �les for the current level, and K �les for the parent's attribute lists, that is 2K �les per

attribute. This way all K leaves in a group have separate �les for each attribute and there is no

read/write conict. Another complication arises from the fact that some children may turn out to

be pure (i.e., all records belong to the same class) at the next level. Since these children will not

be processed after the next stage, we have to be careful in the �le assignment for these children.

A simple �le assignment, without considering the child purity, where children are assigned �les

from 0; � � � ; K � 1, will not work well, as it may introduce \holes" in the schedule (see Figure 6).

However, if we knew which children will be pure in the next level, we can do better.

The class histograms gathered while splitting the children are adequate to determine purity. We

add a pre-test for child purity at this stage. If the child will become pure at the next level, it is

removed from the list of valid children, and the �les are assigned consecutively among the remaining

children. This insures that there are no holes in the K block, and we get perfect scheduling.

The two approaches are contrasted in Figure 6. The bold circles show the valid children for the

current and next level. With the simple labeling scheme the �le labels for the valid children are

L0; L0; R0; R0;R0. With a window of size K = 2, there is only one instance where work can

overlap, i.e., when going from L0 to R0. However, if we relabel the valid children's �les then we

obtain the perfectly schedulable sequence L0; R0; L0;R0; L0.

Note that the overlapping of work is achieved at the cost of increased barrier synchronization,

one per each K-block. A large window size not only increases the overlap but also minimizes the

number of synchronizations. However, a larger window size implies more temporary �les, which

incurs greater �le creation overhead and tends to have less locality. The ideal window size is a

trade-o� between the above conicting goals.

3.2.3 The Moving-Window-K Algorithm (MWK)

We now describe the Moving-Window-K (MWK) algorithm which eliminates the serial bottleneck

of BASIC and exploits greater parallelism than FWK. Figures 7 shows the pseudo-code for MWK.

Consider a current leaf frontier: fL01; R01; L02; R02g. With a window size of K = 2, not

only is there parallelism available for �xed blocks fL01; R01g and fL02; R02g (used in FWK), but

also between these two blocks, fR01; L02g. The MWK algorithm makes use of this additional

parallelism.

This scheme is implemented by replacing the barrier per block of K leaves with a wait on a
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forall attributes in parallel (dynamic scheduling)

forall attributes in parallel (dynamic scheduling)
each leaffor

barrier

split attributes (S)

// Starting with the root node execute the
// following code for each new tree level

each block of K leavesfor
each leaf ifor
if (last block’s i-th leaf not done) then

wait
evaluate attributes (E)
if (last processor finishing on leaf i)

get winning attribute; form hash-probe (W)
signal that i-th leaf is done

then

L1

L0

R1

R0 R0

L1

L0 L0

L1 L1 L1 R1R1R1R1

P={0,1,2,3}
LOCK SYNCHRONIZATION

TOTAL FILES PER ATTRIBUTE: (2*WindowSize) = 2*2 = 4

Figure 7: The MWK algorithm.

conditional variable. Before evaluating leaf i, a check is made whether the i-th leaf of the previous

block has been processed. If not, the processor goes to sleep on the conditional variable. Otherwise,

it proceeds with the current leaf. The last processor to �nish the evaluation of leaf i from the

previous block constructs the hash probe, and then signals the conditional variable, so that any

sleeping processors are woken up.

It should be observed that the gain in available parallelism comes at the cost of increased lock

synchronization per leaf (however, there is no barrier anymore). As in the FWK approach, the �les

are relabeled by eliminating the pure children. A larger K value would increase parallelism, and

while the number of synchronizations remain about the same, it will reduce the average waiting

time on the conditional variable. Like FWK, this scheme requires 2K �les per attribute, so that

each of the K leaves has separate �les for each attribute and there is no read/write conict.

3.3 Subtree Task Parallelism | The Subtree Algorithm (SUBTREE)

The data parallel approaches target the parallelism available among the di�erent attributes. On the

other hand the task parallel approach is based on the parallelism that exists in di�erent sub-trees.

Once the attribute lists are partitioned, each child can be processed in parallel. One implementation

of this idea would be to initially assign all the processors to the tree root, and recursively partition

the processor sets along with the attribute lists. Once a processor gains control of a subtree, it will

work only on that portion of the tree. This approach would work �ne if we have a full tree. In

general, the decision trees are imbalanced and this static partitioning scheme can su�er from large

load imbalances. We therefore use a dynamic subtree task parallelism scheme.

The pseudo-code and illustration for the dynamic SUBTREE algorithm is shown in Figure 8. To

implement dynamic processor assignment to di�erent subtrees, we maintain a queue of currently

idle processors, called the FREE queue. Initially this queue is empty, and all processors are assigned

to the root of the decision tree, and belong to a single group. One processor within the group is

made the group master (we chose the processor with the smallest identi�er as the master). The

master is responsible for partitioning the processor set.

At any given point in the algorithm, there may be multiple processor groups working on distinct

12



(Processor Group P = {p1, p2, ..., px},
 Leaf Frontier L = {l1, l2, ..., ly})

SubTree

apply SIMPLE algorithm on L with P processors
NewL = {l1, l2, ..., lm}   //new leaf frontier

if (NewL is empty) then

(group master) thenelseif

if (only one leaf remaining) then
(NewP, l1)SubTree

elseif (only one processor in group) then

//multiple leaves and processorselse
(p1, NewL)SubTree

SubTree (P1, L1)

split NewL into L1 and L2
split NewP into P1 and P2

SubTree (P2, L2)

get FREE processors; NewP = {p1, p2, ..., pn}

wakeup processors in NewP

//not the group masterelse

put self in FREE queue

go to sleep

L0

L0

L4

L2 L6

L1

L0 L4

L3 L5 L7 R7R5R3R1

L0 L0 L2 L2 L4 L6L6L4R0 R0 R2 R2 R4 R4 R6 R6

P={0,1,2,3}

P={2,3}P={0,1}

P={0} P={1} P={2} P={3}

BARRIER

TOTAL FILES PER ATTRIBUTE: (4*P) = 4*4 = 16

Figure 8: The SUBTREE algorithm.

subtrees. Each group independently executes the following steps once the BASIC algorithm has

been applied to the current subtree level. First, the new subtree leaf frontier is constructed. If there

are no children remaining, then each processor inserts itself in the FREE queue, ensuring mutually

exclusive access via locking. If there is more work to be done, then all processors except the master

go to sleep on a conditional variable. The group master checks if there are any new arrivals in the

FREE queue and grabs all free processors in the queue. This forms the new processor set.

There are three possible cases at this juncture. If there is only one leaf remaining, then all

processors are assigned to that leaf. If there is only processor in the previous group and there

is no processor in the FREE queue, then it forms a group on its own and works on the current

leaf frontier. Lastly, if there are multiple leaves and multiple processors, the group master splits

the processor set into two parts, and also splits the leaves into two parts. The two newly formed

processor sets become the new groups, and work on the corresponding leaf sets.

Finally, the master wakes up the all the relevant processors|those in the original group and

those acquired from the FREE queue. Since there are P processors, there can be at most P groups,

and since the attribute �les for all of these must be distinct, this scheme requires up to 4P �les per

attribute.

3.4 Discussion

We now qualitatively discuss the relative merits of each of the proposed algorithms. An experi-

mental comparison will be presented in the next section.

The MWK scheme eliminates the hash-probe construction bottleneck of BASIC via task pipelin-

ing. Furthermore, it fully exploits the available parallelism via the moving window mechanism,

instead of using the �xed window approach of FWK. It also eliminates barrier synchronization

completely. However, it introduces a lock synchronization per leaf per level. If the tree is bushy,

then the increased synchronization could nullify the other bene�ts. A feature of MWK and FWK

is that they exploit parallelism at a �ner grain. The attributes in a K-block may be scheduled

dynamically on any processor. This can have the e�ect of better load balancing compared to the
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coarser grained BASIC approach where a processor works on all the leaves for a given attribute.

While MWK is essentially a data parallel approach, it utilizes some elements of task parallelism

in the pipelining of the evaluation and hash probe construction stages. The SUBTREE approach

is also a hybrid approach in that it uses the BASIC scheme within each group. In fact we can also

use FWK or MWK as the subroutine. The pros of this approach are that it has only one barrier

synchronization per level within each group and it has good processor utilization. As soon as a

processor becomes idle it is likely to be grabbed by some active group. Some of the cons are that

it is sensitive to the tree structure and may lead to excessive synchronization for the FREE queue,

due to rapidly changing groups. Another disadvantage is that it requires more memory, because

we need a separate hash probe per group.

The reader may have observed that, as described above, our SMP algorithms can create a large

number of temporary �les (2Kd for MWK and 4dP for SUBTREE). However, it is possible to

have a little more complex design so that lists for di�erent attributes are combined into the same

physical �le. Such a design will reduce the number of temporary �les to 2K for MWK and 4P for

4dP . The essential idea is to associate physical �les for writing attribute lists with processor (rather

than with attribute). In the split phase, a processor now writes all attribute lists to the same two

physical �les (for the left and right children). Additional bookkeeping data structures keep track

of the start and end of di�erent attribute lists in the �le. These data structures are shared at the

next tree level by all processors to locate the input attribute list for each dynamically assigned

attribute. Note that this scheme does not incur additional synchronization overhead because a

processor starts processing a new attribute list only after completely processing the one on hand.

4 Performance Evaluation

The primary metric for evaluating classi�er performance is classi�cation accuracy| the percentage

of test examples (di�erent from training examples used for building the classi�er) that are correctly

classi�ed. The other important metrics are time to build the classi�er and the size of the decision

tree. The ideal goal for a decision tree classi�er is to produce compact, accurate trees in a short

time.

The accuracy and tree size characteristics of our SMP classi�er are identical to SLIQ/SPRINT

since they consider the same splits and use the same pruning algorithm. SLIQ's accuracy, execution

time, and tree size have been compared with other classi�ers such as CART [4] and C4 (a predecessor

of C4.5 [17]). This performance evaluation, available in [14], shows that compared to other classi�ers

SLIQ achieves comparable or better classi�cation accuracy, but produces small decision trees and

has small execution times. We, therefore, focus only on the classi�er build time in our performance

evaluation.

4.1 Experimental Setup

Machine Con�guration Experiments were performed on two SMP machines with di�erent

con�gurations shown in Table 1. On both machines, each processor is a PowerPC-604 processor

running at 112 MHz with a 16 KB instruction cache, a 16 KB data cache, and a 1 MB L2-Cache.
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These two machines represent two possible scenarios. With Machine A, the amount of memory

is insu�cient for training data, temporary �les, and data structures to �t in memory. Therefore,

the data will have to be read from and written to the disk for almost every new level of the tree.

Machine B has a large memory relative to the size of the data. Therefore, all the temporary �les

created during the run are cached in memory. The �rst case is of greater interest to the database

community and we present a detailed set of experiments for this con�guration. However, due to

the decreasing cost of RAM, the second con�guration is also increasingly realizable in practice. We

present this case to study the impact of large memories on the performance of our algorithms.

Machine Number Main Disk Space Access Operating
Name Processors Memory Available Type System

Machine A 4 128 MB 300 MB local disk AIX 4.1.4
Machine B 8 1 GB 2 GB main-memory(cached) AIX 4.1.5

Table 1: Machine con�gurations.

Datasets An often used classi�cation benchmark is STATLOG[15]. Its largest dataset contains

about 57,000 records. In our performance study we are interested in evaluating the SMP algorithms

on large out-of-core data. We therefore use the synthetic benchmark proposed in [1] and used in

several past studies. Example tuples in this benchmark have both continuous and categorical

attributes. The benchmark gives several classi�cation functions of varying complexity to generate

synthetic databases. We present results for two of these functions, which are at the two ends of the

complexity spectrum. Function 2 is a simple function to learn and results in fairly small decision

trees, while Function 7 is the most complex function and produces large trees (see Table 2). Both

these functions divide the database into two classes: Group A and Group B. For each of Functions

2 and 7, we try 3 di�erent databases: 8 attributes with 1 million records, 32 attributes with 250K

records, and 64 attributes with 125K records. The notation Fx-Ay-DzK is used to denote the

dataset with function x, y attributes and z � 1000 example records. The above choices allow us

to investigate the e�ect of di�erent data characteristics such as number of tuples and number of

attributes.

Dataset Corresponding Tree
Dataset Function Number of Number of Database Number of Max No. of
Notation Attributes Tuples Size Levels Leaves/Level

F2-A8-D1000K F2 8 1000K 61 MB 4 2
F2-A32-D250K F2 32 250K 57.3 MB 4 2
F2-A64-D125K F2 64 125K 56.6 MB 4 2
F7-A8-D1000K F7 8 1000K 61 MB 60 4662
F7-A32-D250K F7 32 250K 57.3 MB 59 802
F7-A64-D125K F7 64 125K 56.6 MB 55 384

Table 2: Dataset characteristics.
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Algorithms Our initial experiments (not reported here for lack of space) con�rmed that MWK

was indeed better than BASIC as expected, and that it performs as well or better than FWK.

Thus, we will only present the performance of MWK and SUBTREE.

We experimented with window sizes of 2, 4 and 8 for MWK. A larger window size implies more

overhead on the �le creation and managing related data structures. On the other head, a smaller

window size may not have enough parallelism, especially when there are many processors and

relatively few attributes. We found for our experiments a window size of 4 to be a good overall

choice unless the ratio of the number of attributes to the number of processors is small (less than

2) and in that case we use a window size of 8 (which performs better than a window size of 4 by

as much as 9%). In general, a simple rule of thumb for the window size is that if the number of

attributes is at least twice the number of processors (which is typically the case for a real world

run), a window size of 4 should be chosen. In the rare case when d=P < 2, we choose the smallest

W such that W � d=p � 8.

4.2 Initial Setup and Sort Time

Table 3 shows the uniprocessor time spent in the initial attribute list creation phase (setup phase),

as wells as the time spent in one-time sort of the attribute lists for the continuous attributes (sort

phase). The time spent in these two phases as a fraction of total time to build a classi�er tree

depends on the complexity of the input data for which we are building the classi�cation model. For

simple datasets such as F2, it can be signi�cant, whereas it is negligible for complex datasets such

as F7.

We have not focussed on parallelizing these phases, concentrating instead on the more challenging

build phase. There is much existing research in parallelizing sort including on SMP machines [3].

The creation of attribute lists can be speeded up by essentially using multiple input streams and

merging this phase with the sort phase. In our implementation, the data scan to create attribute

lists is sequential, although we write attribute lists in parallel. Attribute lists are sorted in parallel

by assigning them to di�erent processors. When we present the speedup graphs in the next section,

we will show the speedups separately for the build phase as well as for the total time (including

initial setup and sort times). There is obvious scope for improving the speedups for the total time.

Dataset Setup Time Sort Time Total Time Setup % Sort %
(seconds) (seconds) (seconds)

F2-A8-D1000K 721 633 3597 20.0% 17.6%
F2-A32-D250K 685 598 3584 19.1% 16.6%
F2-A64-D125K 705 626 3665 19.2% 17.1%
F7-A8-D1000K 989 817 23360 4.2% 3.5%
F7-A32-D250K 838 780 24706 3.4% 3.2%
F7-A64-D125K 672 636 22664 3.0% 2.8%

Table 3: Sequential setup and sorting times.
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4.3 Parallel Build Performance: Local Disk Access

We consider four main parameters for performance comparison: 1) number of processors, 2) number

of attributes, 3) number of example tuples, and 4) classi�cation function (Function 2 or Function

7). We �rst study the e�ect of varying these parameters on the MWK and SUBTREE algorithms

on Machine A.

Figure 9 shows the parallel performance and speedup of the two algorithms as we vary the

number of processors for the two classi�cation functions F2 and F7, and using the dataset with

eight attributes and one million records (A8-D1000K). Figures 10 and 11 show similar results for

datasets A32-D250K and A64-D125K, respectively. The speedup chart in the rightmost part of

each �gure shows the speedup of the total time (including the setup time and sort time), while the

speedup chart to the left of it and the two leftmost bar charts show only the build time (excluding

the setup time and sort time).

Considering the build time only, the speedups for both algorithms on 4 processors range from

2.97 to 3.32 for function F2 and from 3.25 to 3.86 for function F7. For function F7, the speedups of

total time for both algorithms on 4 processors range from 3.12 to 3.67. The important observation

from these �gures is that both algorithms perform quite well for various datasets. Even the overall

speedups are good for complex datasets generated with function F7. As expected, the overall

speedups for simple datasets generated by function F2, in which build time is a smaller fraction of

total time, are relatively not as good (around 2.2 to 2.5 on 4 processors). These speedups can be

improved by parallelizing the setup phase more aggressively.

MWK's performance is mostly comparable or better than SUBTREE. The di�erence ranges from

8% worse than SUBTREE to 22% better than SUBTREE. Most of the MWK times are within 10%

better than SUBTREE. We see two trends from these �gures.

First, the overall advantage of MWK over SUBTREE is more visible for the simple function F2.

The reason is that F2 generates very small trees with 4 levels and a maximum of 2 leaves in any

new leaf frontier. Around 40% of the total time is spent in the root node, where SUBTREE has

only one process group. Thus on this dataset SUBTREE is unable to fully exploit the inter-node

parallelism successfully. MWK is the winner because it not only overlaps the E and W phases, but

also manages to reduce the load imbalance.

The �gures also show that on F2, increasing the number of attributes worsens the performance

of SUBTREE. This is because a free processor can join a new group only at the end of a level.

As each processor or group becomes free it waits in the FREE queue to rejoin the computation.

However, it will not be assimilated into the new group until one of the existing group �nishes

working on all 64 attributes. Clearly, the larger the number of attributes the larger the wait,

and this adversely impacts the performance of SUBTREE. On the other hand, MWK does not

su�er from this phenomenon. It has the opposite trend, more attributes lead to a better attribute

scheduling, which tends to minimize imbalance.

Another observable trend is that having greater number of processors tends to favor SUBTREE.

In other words, the advantage of MWK over SUBTREE tends to decrease as the number of pro-

cessors increases. This is can be seen from �gures for both F2 and F7 by comparing the build

times for the two algorithms �rst with 2 processors, then with 4 processors. This is because after
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Figure 9: Local disk access: functions 2 and 7; 8 attributes; 1000K records.
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Figure 10: Local disk access: functions 2 and 7; 32 attributes; 250K records.
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Figure 11: Local disk access: functions 2 and 7; 64 attributes; 125K records.
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about log P levels of the tree growth, the only synchronization overhead for SUBTREE, before any

processor becomes free, is that each processor checks the FREE queue once per level. On the other

hand, for MWK, there will be relatively more processor synchronization overhead, as the number

of processors increases, which includes acquiring attributes, checking on conditional variables, and

waiting on barriers.

4.4 Parallel Build Performance: Main-Memory (Cached) Access

We next compare the parallel performance and speedups of the algorithms on Machine B. This

con�guration has 1 GB of main-memory available. Thus after the very �rst access the data will

be cached in main-memory, leading to fast access times. Machine B has 8 processors. Figures 12

to 14 show three sets of timing and speedup charts, corresponding to Figures 9 to 11, respectively.

Note the numbers of processors on the X-axis are 1, 2, 4 and 8.

Considering the build time only, the speedups for both algorithms on 8 processors range from

5.46 to 6.37 for function F2 and from 5.36 to 6.67 (and at least 6.22 with 32 or 64 attribute) for

function F7. For function F7, the speedups of total time for both algorithms on 8 processors range

from 4.63 to 5.77 (and at least 5.25 for 32 or 64 attributes). Again, the important observation from

these �gures is that both algorithms perform very well for various datasets even up to 8 processors.

The overall trends observable from these �gures are similar to those for the disk con�guration.

First, shallow trees (e.g., generated by F2) tend to hurt SUBTREE, 2) Greater number of processors

tends to favor SUBTREE more, 3) Having a small number of attributes tends to hurt MWK. The

combination of factors 2 and 3 can be seen from the 8-processor timings for the two A8-D1000K

datasets.

5 Conclusion

We presented parallel algorithms for building decision-tree classi�ers on SMP systems. The pro-

posed algorithms span the gamut of data and task parallelism. The MWK algorithm uses data

parallelism from multiple attributes, but also uses task pipelining to overlap di�erent comput-

ing phase within a tree node, thus avoiding potential sequential bottleneck for the hash-probe

construction for the split phase. The MWK algorithm employs conditional variable, not barrier,

among leaf nodes to avoid unnecessary processor blocking time at a barrier. It also exploits dy-

namic assignment of attribute �les to a �xed set of physical �les, which maximizes the number

of concurrent accesses to disk without �le interference. The SUBTREE algorithm uses recursive

divide-and-conquer to minimize processor interaction, and assigns \free processors" dynamically to

\busy group" to achieve load balancing.

Experiments show that both algorithms achieve good speedups in building the classi�er on a 4-

processor SMP with disk con�guration and on an 8-processor SMP with memory con�guration for

various numbers of attributes, various numbers of example tuples of input databases, and various

complexities of data models. The performance of both algorithms are comparable, but MWK

overall has a slight edge. These experiments demonstrate that the important data mining task of

classi�cation can be e�ectively parallelized on SMP machines.
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Figure 12: Main-memory access: functions 2 and 7; 8 attributes; 1000K records.
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Figure 13: Main-memory access: functions 2 and 7; 32 attributes; 250K records.
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Figure 14: Main-memory access: functions 2 and 7; 64 attributes; 125K records.
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