
Research Report
Constraint-Based Rule Mining in Large, Dense Databases

Roberto J. Bayardo Jr.
Rakesh Agrawal
Dimitrios Gunopulos

IBM Research Division
Almaden Research Center
650 Harry Road
San Jose, California 95120

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its dis-
tribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties).

Research Division
Yorktown Heights, New York u San Jose, California u Zurich, Switzerland

Constraint-Based Rule Mining in Large, Dense Databases

Roberto J. Bayardo Jr.
Rakesh Agrawal
Dimitrios Gunopulos*

IBM Research Division
Almaden Research Center
650 Harry Road
San Jose, California 95120

ABSTRACT:

Constraint-based rule miners find all rules in a given data-set meeting user-specified constraints
such as minimum support and confidence. We describe a new algorithm that exploits all user-
specified constraints including minimum support, minimum confidence, and a new constraint that
ensures every mined rule offers a predictive advantage over any of its simplifications. Our algo-
rithm maintains efficiency even at low supports on data that is dense (e.g. relational data). Previ-
ous approaches such as Apriori and its variants exploit only the minimum support constraint, and
as a result are ineffective on dense data due to a combinatorial explosion of “frequent itemsets”.

*Current affiliation: University of California at Riverside

1

1. Introduction
Mining rules from data is a problem that has attracted considerable interest because a rule

provides a concise statement of potentially useful information that is easily understood by end

users. In the database literature, the focus has been on developing association rule [2] algorithms

that identify all conjunctive rules meeting user-specified constraints such as minimum support (a

statement of generality) and minimum confidence (a statement of predictive ability). The com-

pleteness guarantee provided by association rule miners is what distinguishes them from other

rule-mining methods such as decision-tree induction. This completeness guarantee provides a

high level of comfort to the analyst who uses rules for decision support (end-user understanding),

as opposed to building a predictive model for performing automated classification tasks.

Association rule algorithms were initially developed to tackle data-sets primarily from the

domain of market-basket analysis. In market-basket analysis, one problem is to mine rules that

predict the purchase of a given set of store items based on other item purchases made by the con-

sumer. Though the dimensionality of market-basket data is quite high (equal to the total number

of distinct items), the number of items appearing in a typical record (or transaction) is tiny in com-

parison. This sparsity is exploited by algorithms such as Apriori for efficient mining. Unlike data

from market-basket analysis, data-sets from several other domains including telecommunications

data analysis [29], census data analysis [10], and classification and predictive modeling tasks in

general tend to be dense in that they have any or all of the following properties:1

• many frequently occurring items (e.g. sex=male);

• strong correlations between several items;

• many items in each record.

These data-sets cause an exponential blow-up in the resource consumption of standard

association rule mining algorithms including Apriori [3] and its many variants. The combinatorial

explosion is a result of the fact that these algorithms effectively mine all rules that satisfy only the

minimum support constraint, the number of which is exorbitant [6,7,18]. Though other rule con-

straints are specifiable, they are typically enforced solely during a post-processing filter step.

In this paper, we directly address the problem of constraint-based rule mining in dense

data. Our approach is to enforce all user-specified rule constraints during mining. For example,

most association rule miners allow users to set a minimum on the predictive ability of any mined

rule specified as either a minimum confidence [2] or an alternative measure such as lift [9,15] or

conviction [10]. We present an algorithm that can exploit such minimums on predictive ability

during mining for vastly improved efficiency.

1 Market-basket data is sometimes dense, particularly when it incorporates information culled from convenience card
applications for mining rules that intermix personal attributes with items purchased.

2

Even given strong minimums on support and predictive ability, the rules satisfying these

constraints in a dense data-set are often too numerous to be mined efficiently or comprehended by

the end user. A constraint-based rule miner that can be effectively applied to dense data must

therefore provide alternative or additional constraints that the user may specify. Ideally, the con-

straints should be easy to specify, and further, eliminate only those rules that are uninteresting. To

this end, we present and incorporate into our algorithm a new constraint that eliminates any rule

that can be simplified to yield an equally or more predictive rule. This constraint is motivated by

the principle of Occam’s Razor, which states that plurality should not be posited without neces-

sity. To motivate this concept, first consider the example rule given below.

Bread & Butter Milk (Confidence = 80%)

The rule has a confidence of 80%, which means that 80% of the people who purchase

bread and butter also purchase the item in the consequent of the rule, which is milk. Because of its

high confidence, one might be inclined to believe that this rule is an interesting finding if the goal

is to, say, understand the population of likely milk buyers in order to make better stocking and dis-

counting decisions. However, if 85% of the population under examination purchased milk, this

rule is actually quite uninteresting for this purpose since it characterizes a population that is even

less likely to buy milk than the average shopper. Put more concretely, this “wordy” rule offers no

advantage over the simple rule predicting milk whose antecedent is empty (always evaluating to

true).

This point has already motivated additional measures for identifying interesting rules,

including lift and conviction. Both lift and conviction represent the predictive advantage a rule

offers over simply guessing based on the frequency of the consequent. But both measures still fail

to fully enforce Occam’s Razor, as illustrated by the next two rules.

Eggs & Cereal Milk (Confidence = 95%)

Cereal Milk (Confidence = 99%)

Because the confidence of the first rule (95%) is significantly higher than the frequency

with which milk is purchased (85%), the rule will have lift and conviction values that could imply

to the end-user that it is interesting for understanding likely milk buyers. But note that the second

rule tells us that the purchase of cereal alone implies that milk is purchased with 99% confidence.

We thus have that the first rule actually represents a significant decrease in predictive ability over

the second, more concise rule which is more broadly applicable (because there are more people

who buy cereal than people who buy both cereal and eggs).

The algorithm we describe in this paper directly allows the user to eliminate unnecessarily

complex rules by specifying a minimum improvement constraint. The idea is to mine only those

rules whose confidence is at least minimp greater than the confidence of any of its simplifications,

where a simplification of a rule is formed by removing one or more conditions from its anteced-

→

→
→

3

ent. Any positive setting of minimp would prevent the unnecessarily complex rules from the

examples above from being generated by our algorithm. By making this constraint a threshold, the

user is free to define what is considered to be a “significant” improvement in predictive ability.

This feature remedies the rule explosion problem resulting from the fact that in dense data-sets,

the confidence of many rules can often be marginally improved upon in an overwhelming number

of ways by adding conditions. For example, given the rule stating that cereal implies milk with

99% confidence, there may be hundreds of rules of the form below with a confidence between

99% and 99.1%.

Cereal & & & & Milk

The improvement constraint allows the user to trade away such marginal benefits in pre-

dictive ability for a far more concise set of rules, with the added property that every returned rule

consists entirely of items that are strong contributors to its predictive ability. We feel this is a

worthwhile trade-off in most situations where the mined rules are used for end-user understand-

ing.

For rules to be comparable in the above-described context, they must have equivalent con-

sequents. For this reason, our work is done in the setting where the consequent of the rules is fixed

and specified in advance. This setting is quite natural in many applications where the goal is to

discover properties of a specific class of interest. This task is sometimes referred to as partial-clas-

sification [5]. Some example domains where it is applicable include failure analysis, fraud detec-

tion, and targeted marketing among many others.

1.1 Paper overview
Section 2 summarizes related work. Section 3 formally defines and motivates the problem

of mining rules from dense data subject to minimum support, confidence, and/or improvement

constraints. Section 4 begins with an overview of the general search strategy, and then presents

pseudo-code for the top level of our algorithm. Section 5 provides details and pseudo-code for the

pruning functions invoked by the algorithm body. Section 6 details an item-reordering heuristic

for improving pruning performance. Section 7 describes the rule post-processor, which is used to

fully enforce the minimum improvement constraint. Some additional optimizations are discussed

by Section 8, after which the algorithm is empirically evaluated in Section 9. Section 10 con-

cludes with a summary of the contributions.

2. Related work
Previous work on mining rules from data is extensive. We will not review the numerous

proposals for greedy or heuristic rule mining (e.g. decision tree induction) and focus instead on

constraint-based algorithms. We refer the reader interested in heuristic approaches to mining large

data-sets to the scalable algorithms proposed in [12] and [27].

I1 I2 … In →

4

There are several papers presenting improvements to the manner in which the Apriori

algorithm [3] enumerates all frequent itemsets (e.g. [10,21,24,31]), though none address the prob-

lem of combinatorial explosion in the number of frequent itemsets that results from applying these

techniques to dense data. Other works (e.g. [7,14,17]) show how to identify all maximal frequent

itemsets in data-sets where the frequent itemsets are long and numerous. Unfortunately, all associ-

ation rules cannot be efficiently extracted from maximal frequent itemsets alone, as this would

require performing the intractable task of enumerating and computing the support of all their sub-

sets.

Srikant et al. [29] and Ng et al. [20] have investigated incorporating item constraints on the

set of frequent itemsets for faster association rule mining. These constraints, which restrict the

items or combinations of items that are allowed to participate in mined rules, are orthogonal to

those exploited by our approach. We believe both classes of constraints should be part of any rule-

mining tool or application.

There is some work on ranking association rules using interest measures [10,15,16],

though this work gives no indication of how these measures could be exploited to make mining on

dense data-sets feasible. Smythe and Goodman [28] describe a constraint-based rule miner that

exploits an information theoretic constraint which heavily penalizes long rules in order to control

model and search complexity. We incorporate constraints whose effects are easily understood by

the end user, and allow efficient mining of long rules should they satisfy these constraints.

There are several proposals for constraint-based rule mining with a machine-learning

instead of data-mining focus that do not address the issue of efficiently dealing with large data-

sets. Webb [30] provides a good survey of this class of algorithms, and presents the OPUS frame-

work which extends the set-enumeration search framework of Rymon [22] with additional generic

pruning methods. Webb instantiates his framework to produce an algorithm for obtaining a single

rule that is optimal with respect to the Laplace preference function. We borrow from this work the

idea of exploiting an optimistic pruning function in the context of searching through a power set.

However, instead of using a single pruning function for optimization, we use several for constraint

enforcement. Also, because the itemset frequency information required for exploiting pruning

functions is expensive to obtain from a large data-set, we frame our pruning functions so that they

can accommodate restricted availability of such information.

3. Definitions and problem statement
A transaction is a set of one or more items obtained from a finite item domain, and a data-

set is a collection of transactions. A set of items will be referred to more succinctly as an itemset.

The support of an itemset , denoted , is the number of transactions in the data-set to con-

tain . An association rule, or just rule for short, consists of an itemset called the antecedent, and

I sup I()

I

5

an itemset disjoint from the antecedent called the consequent. A rule is denoted as where

 is the antecedent and the consequent. The support of an association rule is the support of the

itemset formed by taking the union of the antecedent and consequent (). The confidence of

an association rule is the probability with which the items in the antecedent appear together

with items in the consequent in the given data-set. More specifically:

The association rule mining problem [2] is to produce all association rules present in a

data-set that meet specified minimums on support and confidence. In this paper, we restrict the

problem in two ways in order to render it solvable given dense data.

3.1 The consequent constraint
We require mined rules to have a given consequent specified by the user. This restric-

tion is an item constraint which can be exploited by other proposals [20, 29], but only to reduce

the set of frequent itemsets considered. A frequent itemset is a set of items whose support exceeds

the minimum support threshold. Frequent itemsets are too numerous in dense data even given this

item constraint. Our algorithm instead leverages the consequent constraint through pruning func-

tions for enforcing confidence, support, and improvement (defined next) constraints during the

mining phase.

3.2 The minimum improvement constraint
While our algorithm runs efficiently on many dense data-sets without further restriction,

the end-result can easily be many thousands of rules, with no indication of which ones are “good”.

On some highly dense data-sets, the number of rules returned explodes as support is decreased,

resulting in unacceptable algorithm performance and a rule-set the end-user has no possibility of

digesting. We address this problem by introducing an additional constraint.

Let the improvement of a rule be defined as the minimum difference between its confi-

dence and the confidence of any proper sub-rule with the same consequent. More formally, for a

rule :

If the improvement of a rule is positive, then removing any non-empty combination of

items from its antecedent will drop its confidence by at least its improvement. Thus, every item

and every combination of items present in the antecedent of a large-improvement rule is an impor-

tant contributor to its predictive ability. A rule with negative improvement is typically undesirable

because the rule can be simplified to yield a proper sub-rule that is more predictive, and applies to

an equal or larger population due to the antecedent containment relationship. An improvement

greater than 0 is thus a desirable constraint in almost any application of association rule mining. A

A C→
A C

A C∪
A

C

conf A C→() supA C∪()
supA()

---------------------------=

C

A C→

imp A C→() min A∀ ' A⊂ conf A C→() conf A' C→()–,()=

6

larger minimum on improvement is also often justified because most rules in dense data-sets are

not useful due to conditions or combinations of conditions that add only a marginal increase in

confidence. Our algorithm allows the user to specify an arbitrary positive minimum on improve-

ment.

3.3 Problem statement
We develop an algorithm for mining all association rules with consequent meeting user-

specified minimums on support, confidence, and improvement. The algorithm parameter specify-

ing the minimum confidence bound is known as minconf, and the minimum support bound min-

sup. We call the parameter specifying a minimum bound on improvement minimp. A rule is said

to be confident if its confidence is at least minconf, and frequent if its support is at least minsup. A

rule is said to have a large improvement if its improvement is at least minimp.

Other measures of predictive ability that are sometimes used to rank and filter rules in

place of confidence include lift [9,15] (which is also known as interest [10] and strength [13]) and

conviction [10]. Below we show that these values can each be expressed as a function of the rule’s

confidence and the frequency of the consequent; further, note that both functions are monotone in

confidence:

Though we frame the remainder of this work in terms of confidence alone, it can be recast

in terms of these alternative measures. This is because, given a fixed consequent, each measure

ranks rules identically.

C

lift A C→() P A C∧()
P A()P C()
-----------------------=

supA C∪() sup∅()⁄
supA() sup∅()⁄() supC() sup∅()⁄()

---=

sup∅()
supC()
----------------- conf A C→()⋅=

convictionA C→() P A()P C¬()
P A C¬∧()
----------------------------=

supA() sup∅()⁄() sup∅() supC()–
sup∅()

supA() supA B∪()–
sup∅()

---=

sup∅() supC()–
sup∅() 1 conf A C→()–[]
--=

7

4. Set-enumeration search in large data-sets
From now on, we will represent a rule using only its antecedent itemset since the conse-

quent is assumed to be fixed to itemset . Let denote the set of all items present in the data-

base except for those in the consequent. The rule-mining problem is then one of searching through

the power set of for rules which satisfy the minimum support, confidence, and improvement

constraints. Rymon’s set-enumeration tree framework [22] provides a scheme for representing a

subset search problem as a tree search problem, allowing pruning rules to be defined in a straight-

forward manner in order to reduce the space of subsets (rules) considered. The idea is to first

impose an ordering on the set of items, and then enumerate sets of items according to the ordering

as illustrated in Figure 1.

FIGURE 1. A completely expanded set-enumeration tree over with items ordered
lexically.

4.1 Terminology
We draw upon and extend the machinery developed in previous work where we framed the

problem of mining maximal frequent itemsets from databases as a set-enumeration tree search

problem [7]. Each node in the tree is represented by two itemsets called a group. The first itemset,

called the head, is simply the itemset (rule) enumerated at the given node. The second itemset,

called the tail, is actually an ordered set, and consists of those items which can be potentially

appended to the head to form any viable rule enumerated by a sub-node. For example, at the root

of the tree, the head itemset is empty and the tail itemset consists of all items in .

The head and tail of a group will be denoted as and respectively. The order in

which tail items appear in is significant since it reflects how its children are to be expanded.

Each child of a group is formed by taking an item and appending it to to form

. Then, is made to contain all items in that follow in the ordering. Given this

child expansion policy, without any pruning of nodes or tail items, the set-enumeration tree enu-

merates each and every subset of exactly once.

We say a rule is derivable from a group if , and . By defini-

tion, any rule that can be enumerated by a descendent of in the set-enumeration tree is derivable

from .

Define the candidate set of a group to be the set consisting of the following itemsets:

C U

U

U 1 2 3 4, , ,{ }=

{}

1 2

1,2

1,2,3

1,2,3,4

1,3

1,3,4

1,4 2,3

2,3,4

2,4

3

3,4

4

1,2,4

U

g h g() t g()

t g()

gc g i t g()∈ h g()

h gc() t gc() t g() i

U

r g h g() r⊂ r h g() t g()∪⊆
g

g

g

8

• and ;

• and for all ;

• and .

A group is said to be processed once the algorithm has computed the support of every

itemset in its candidate set.

4.2 Top-level algorithm description
It is now possible to provide a top-level description of the algorithm, which we call Dense-

Miner. The body (Figure 2) implements a breadth-first search of the set enumeration tree with

Generate-Initial-Groups seeding the search. The groups representing an entire level of the tree are

processed together in one pass over the data-set. Though any systematic traversal of the set-enu-

meration tree could be used, Dense-Miner uses a breadth-first traversal to limit the number of

database passes to at most the length of the longest frequent itemset. To support efficient process-

ing of these groups, a hash tree [4] or a trie is first used to index the head of each group in a set of

groups. Then, for each transaction in the data-set, any group whose head is contained by the trans-

action is quickly identified using this data-structure. For each such group, tail items are scanned

and a counter associated with a tail item is incremented should the tail item be found within the

transaction. Each tail item is paired with two count values, one for when the consequent itemset is

present in the transaction and one for otherwise. A pair of counters is also maintained for when

every tail item is found to reside within the transaction for computing the support of the long item-

sets. Due to good locality, this scheme significantly outperforms individually indexing each candi-

date set member within a hash-tree [7].

Generate-Initial-Groups could simply produce the root node which consists of an empty

head and a tail containing all items from . However, our implementation seeds the search at the

second level of the tree after an optimized phase that rapidly computes the support of all 1 and 2

item rules and their antecedents using array data-structures instead of hash trees (a similar optimi-

h g() h g() C∪
h g() i{ }∪ h g() i{ } C∪ ∪ i t g()∈
h g() t g()∪ h g() t g() C∪ ∪

FIGURE 2. Dense-Miner at its top level. The input parameters
minconf, minsup, minimp, and are assumed global.C
DENSE-MINER(Set of Transactions)

;; Returns all frequent, confident, large
;; improvement rules present in
Set of Rules
Set of Groups GENERATE-INITIAL-GROUPS(,)
while is non-empty do

scan to process all groups in
PRUNE-GROUPS(,) ;; Section 5

GENERATE-NEXT-LEVEL()
EXTRACT-RULES()

PRUNE-GROUPS(,) ;; Section 5
return POST-PROCESS(,) ;; Section 7

T

T
R ∅←

G ← T R
G

T G
G R

G ← G
R R ∪← G

G R
R T

U

9

zation is used in the Apriori implementation [4]). This is why the pseudo-code function call

accepts the set of rules (which is passed by reference) -- any of these short rules which are

found to satisfy the input constraints are added to before returning.

Generate-Next-Level (Figure 3) generates the groups that comprise the next level of the

set-enumeration tree. Note that the tail items of a group are reordered before its children are

expanded. This reordering step is a crucial optimization designed to maximize pruning efficiency.

We delay discussing the details of item reordering until after the pruning strategies are described,

because the particular pruning operations greatly influence the reordering strategy. After child

expansion, any rule represented by the head of a group is placed into by Extract-Rules if it is

frequent, confident, and potentially has a large improvement. The support information required to

check if the head of a group represents a frequent or confident rule is provided by the parent of

 in the set-enumeration tree because and are members of its candidate set. As a

result, this step can be performed before is processed. To check if a rule potentially has a large

improvement at this point in the algorithm, Extract-Rules simply compares its confidence to the

confidence of rules enumerated by ancestors of the rule in the set-enumeration tree. A post pro-

cessing phase (the POST-PROCESS function) later determines the precise improvement value of

each rule extracted by this step. The remaining algorithmic details, which include node pruning

(the PRUNE-GROUPS function), item-reordering, and post-processing, are the subjects of the next

three sections.

5. Pruning
This section describes how Dense-Miner prunes both processed and unprocessed groups.

In Figure 2, note that groups are pruned following tree expansion as well as immediately after

they are processed. Because groups are unprocessed following tree expansion, in order to deter-

mine if they are prunable, Dense-Miner uses support information gathered during previous data-

base passes.

R

R

FIGURE 3. Procedure for expanding the next level of the set-
enumeration tree.

GENERATE-NEXT-LEVEL(Set of groups)
;; Returns a set of groups representing the next level
;; of the set-enumeration tree
Set of Groups
for each group in do

reorder the items in ;; Section 6
for each item in do

let be a new group
with and

return

G

Gc ∅←
g G

t g()
i t g()

gc
h gc() h g() i{ }∪=

t gc() j j follows i in the ordering{ }=
Gc Gc gc{ }∪←

Gc

R

g

g h g() h g() C∪
g

10

5.1 Applying the pruning strategies
Dense-Miner applies multiple strategies to prune nodes from the search tree. These strate-

gies determine when a group can be pruned because no derivable rule can satisfy one or more of

the input constraints. When a group cannot be pruned, the pruning function checks to see if it

can instead prune some items from . Pruning tail items reduces the number of children gen-

erated from a node, and thereby reduces the search space. An added benefit of pruning tail items is

that it can increase the effectiveness of the strategies used for group pruning. The observation

below, which follows immediately from the definitions, suggests how any method for pruning

groups can also be used to prune tail items.

OBSERVATION 5.1: Given a group and an item , consider the group such that
 and . If no rules derivable from satisfy some given

constraints, then except for rule , no rules derivable from such that sat-
isfy the given constraints.

The implication of this fact is that given a group and tail item with the stated condi-

tion, we can avoid enumerating many rules which do not satisfy the constraints by simply remov-

ing from after extracting rule if necessary. The implementation of Prune-

Groups, described in Figure 4, exploits this fact.

The group pruning strategies are applied by the helper function Is-Prunable which is

described next. Because fewer tail items can improve the ability of Is-Prunable to determine

whether a group can be pruned, whenever a tail item is found to be prunable from a group, the

group and all tail items are checked once more (due to the outer while loop in the pseudo-code).

g

g

i t g()

g i t g()∈ g’
h g’() h g() i{ }∪= t g’() t g() i{ }–= g’

h g() i{ }∪ r g i r∈

g i

i t g() h g() i{ }∪

FIGURE 4. Top level of the pruning function.
PRUNE-GROUPS(Set of groups , Set of rules)

;; Prunes groups and tail items from groups within
;; and are passed by reference
for each group in do

do

if IS-PRUNABLE()
then remove from
else for each do

let be a group
with
and

if IS-PRUNABLE()
then remove from

put in if it
is a frequent and
confident rule

while

G R
G

G R
g G

try_again false←
g

g G
i t g()∈

g’
h g’() h g() i{ }∪=

t g’() t g() i{ }–=
g’
i t g()

h g() i{ }∪ R

try_again true←
try_again true=

11

5.2 Pruning strategies
The function Is-Prunable computes the following values for the given group :

• an upper-bound on the confidence of any rule derivable from ,

• an upper-bound on the improvement of any rule derivable from that is frequent,

• an upper-bound on the support of any rule derivable from .

Note that a group can be pruned without affecting the completeness of the search if one

of the above bounds falls below its minimum allowed value as specified by minconf, minimp, and

minsup respectively. The difficulty in implementing pruning is in how to compute these bounds

given that acquiring support information from a large data-set is time consuming. We show how to

compute these bounds using only the support information provided by the candidate set of the

group, and/or the candidate set of its parent.

In establishing these bounding techniques in the remaining sub-sections, for a given item

, we sometimes assume the existence of an item contained only by those transactions that do

not contain . Given an itemset , we similarly assume the existence of a derived item that is

contained only by those transactions in the data-set that do not contain all items in . These

derived items need not actually be present in the data-set, since the support of any itemset that

contains one or more derived items can be computed using itemsets which contain no derived

items. This is because for disjoint itemsets and , we have that

. Note also that , which

holds whether or not and/or contain derived items.

5.3 Bounding confidence
THEOREM 5.2: The following expression provides an upper-bound on the confidence of any

rule derivable from a given group :

where and are non-negative integers such that and
.

Proof: Recall that the confidence of a rule is equal to . This fraction can
be rewritten as follows:

 where and .

Because this expression is monotone in and anti-monotone in , we can replace with a
greater or equal value and with a lesser or equal value without decreasing the value of the
expression. Consider replacing with and with . The claim then follows if we establish
that for any rule derivable from , (1) , and (2) . For (1), note that . It

g

uconf g() g

uimp g() g

usupg() g

g

i i¬
i I I¬

I

I1 I2
sup I1 I2¬{ }∪() sup I1() sup I1 I2∪()–= I1 I2⊂ sup I1() sup I2()≥⇒

I1 I2

g

x
x y+

x y y suph g() t g() C¬{ }∪ ∪()≤
x suph g() C∪()≥

r supr C∪() supr()⁄

x'
x' y'+
------------- x' supr C∪()= y' supr() supr C∪()–=

x' y' x'
y'

x' x y' y
r g x x'≥ y y'≤ h g() r⊂

12

follows that , and hence . For (2), note that .
Because , we have

.

Theorem 5.2 is immediately applicable for computing for a processed group

since the following itemsets needed to compute tight values for and are all within its candi-

date set: , , , and . There are rules derivable

from a given group , and the support of these four itemsets can be used to potentially eliminate

them all from consideration. Note that if were frequent, then an algorithm such

as Apriori would enumerate every derivable rule.

We have framed Theorem 5.2 in a manner in which it can be exploited even when the

exact support information used above is not available. This is useful when we wish to prune a

group before it is processed by using only previously gathered support information. For example,

given an unprocessed group , we cannot compute to use for the value

of , but we can compute a lower-bound on the value. Given the parent node of , because

 is a superset of , such a lower-bound is given by the observation below.

OBSERVATION 5.3: Given a group and its parent in the set-enumeration tree,
.

Conveniently, the support information required to apply this fact is immediately available from

the candidate set of .

In the following observation, we apply the support lower-bounding theorem from [7] to

obtain another lower-bound on , again using only support information

provided by the candidate set of .

OBSERVATION 5.4: Given a group and its parent in the set-enumeration tree,

.

When attempting to prune an unprocessed group, Dense-Miner computes both lower-bounds and

uses the greater of the two for in Theorem 5.2.

5.4 Bounding improvement
We propose two complementary methods to bound the improvement of any (frequent) rule

derivable from a given group . The first technique uses primarily the value of

described above, and the second directly establishes an upper-bound on improvement from its

definition. Dense-Miner computes by retaining the smaller of the two bounds provided

by these techniques.

sup r C∪() sup h g() C∪()≤ x x’≥ r h g() t g()∪⊆
r C¬{ }∪ h g() t g() C¬{ }∪ ∪⊆

y sup h g() t g() C¬{ }∪ ∪()≤ sup r C¬{ }∪()≤ sup r() sup r C∪()– y'= =

uconf g() g

x y

h g() h g() C∪ h g() t g()∪ h g() t g() C∪ ∪ 2 t g() 1–

g

h g() t g() C∪ ∪

g sup h g() t g() C¬{ }∪ ∪()

y gp g

h gp() t gp()∪ h g() t g()∪

g gp
sup h gp() t gp() C¬{ }∪ ∪() sup h g() t g() C¬{ }∪ ∪()≤

gp

sup h g() t g() C¬{ }∪ ∪()

gp

g gp

sup h g() C¬{ }∪() sup h gp() i¬ C¬,{ }∪()
i t g()∈

∑– sup h g() t g() C¬{ }∪ ∪()≤

y

g uconf g()

uimp g()

13

Bounding improvement using the confidence bound
The theorem below shows how to obtain an upper-bound on improvement by reusing the

value of along with another value no greater than the confidence of the sub-rule of

 with the greatest confidence.

THEOREM 5.5: The value of where is an upper-bound
on the improvement of any rule derivable from .

Proof: Let denote the sub-rule of with the greatest confidence. Because is a proper
sub-rule of any rule derivable from , we know that is an upper-
bound on . Because and , we have:

.

Dense-Miner uses the previously described method for computing when apply-

ing this result. Computing a tight value for requires knowing the sub-rule of with the

greatest confidence. Because is not known, Dense-Miner instead sets to the value of the fol-

lowing easily computed function:

 if has a parent ,

 otherwise.

The fact that follows from its definition. Its computation

requires only the value of where is the parent of , and the supports of and

 in order to compute . The value can be computed whether or not the group

has been processed because this information can be obtained from the parent group.

Bounding improvement directly
A complementary method for bounding the improvement of any frequent rule derivable

from is provided by the next theorem. This technique exploits strong dependencies between

head items.

uconf g() z

h g()

uconf g() z– z max r∀ h g()⊆ conf r(),()≤
g

rs h g() rs
rd g conf rd() conf rs()–

imp rd() uconf g() conf rd()≥ z conf rs()≤
imp rd() conf rd() conf rs()–≤

 conf rd() z–≤
 uconf g() z–≤

uconf g()

z rs h g()

rs z

fz g() max fz gp() conf h g()(),()= g gp
fz g() conf h g()()=

fz g() max r∀ h g()⊆ conf r(),()≤
fz gp() gp g h g()

h g() C∪ conf h g()()

g

14

THEOREM 5.6: The following expression provides an upper-bound on the improvement of any
frequent rule derivable from a given group :

where , and are non-negative integers such that ,
, and

Proof sketch:For any frequent rule derivable from , note that can be written as:

where the first term represents (as in Theorem 5.2) and the subtractive term represents
the confidence of the proper sub-rule of with the greatest confidence. To prove the claim, we
show how to transform this expression into the expression from the theorem statement, arguing
that the value of the expression never decreases as a result of each transformation.

To begin, let the subtractive term of the expression denote the confidence of , a proper sub-
rule of such that where denotes the item from that minimizes

. Since we can only decrease the value of the subtractive term by
such a transformation, we have not decreased the value of the expression.

Now, given and , it is easy to show that , , and . Because the expression
is anti-monotone in and and monotone in , we can replace with , with , and
with without decreasing its value.

We are now left with an expression identical to the expression in the theorem, except for
occurring in place of . Taking the derivative of this expression with respect to and solving
for 0 reveals it is maximized when . Note that for any rule derivable from ,
must fall between and . Given this restriction on , the equation is max-
imized at . We can therefore replace
with without decreasing its value. The resulting expression, identical to that in the theorem
statement, is thus an upper-bound on .

To apply this result to prune a processed group , Dense-Miner sets to

 since the required supports are known. Computing a tight value for

(where is the item in that minimizes this support value)

is not possible given the support values available in the candidate set of and its ancestors.

Dense-Miner therefore sets to an upper-bound on as computed

by the following function:

 when has a parent and where

denotes the single item within the itemset ,

 otherwise.

g

x
x y+
----------- x

x y β+ +
---------------------–

x y β y sup h g() t g() C¬{ }∪ ∪()≤
β min i∀ h g()∈ sup h g() i{ }–() C¬ i¬,{ }∪(),()≥
x min max y2 yβ+ minsup,() sup h g() C∪(),()=

r g imp r()

x’
x’ y’+
------------- x’ α’+

x’ y’ α+ ’ β’+ +
-----------------------------------–

conf r()
r

rs
r rs r im{ }–= im i h g()

sup h g() i{ }–() C¬ i¬,{ }∪()

r rs α’ 0≥ y’ y≥ β’ β≤
α’ y’ β’ α’ 0 β’ β y’

y

x’
x x’

x’ y2 yβ+= g x’
sup h g() C∪() minsup x’

x’ min max y2 yβ+ minsup,() sup h g() C∪(),() x= = x’
x

imp r()

g y

sup h g() t g() c¬{ }∪ ∪() β
sup h g() im–() im¬ C¬,{ }∪() im h g()

g

β sup h g() im–() im¬ C¬,{ }∪()

fβ g() min fβ gp() sup h gp() i¬ C¬,{ }∪(),()= g gp i

h g() h gp()–

fβ g() ∞=

15

This computation requires only the value of which was previously computed by the parent,

and the supports of candidate set members , , , and in order to

compute .

In applying theorem 5.6 to prune an unprocessed group , Dense-Miner computes as

above. For , it lacks the necessary support information to compute , so

instead it computes a lower-bound on the value as described in section 5.3.

There are a few interesting properties that should be noted about this particular bounding

technique. First, because we incorporate the minsup parameter into the bounding function, it

exploits both frequency and improvement constraints simultaneously, which provides more prun-

ing power than exploiting each of them completely independently. Second, note that in special

case where we have a rule for which , the resulting bound on improvement is always zero.

Also note that if for a given rule , then for any superset of . In this case, the

bound given by this technique is thus anti-monotone with respect to rule containment, which

allows it to be straightforwardly exploited by algorithms such as Apriori. Unfortunately, the more

common case where does not give rise to an anti-monotone bound, so it cannot be exploited

by an Apriori-like algorithm.

5.5 Bounding support
The value of is comparatively easy to compute and exploit because support is

anti-monotone with respect to rule containment. Any such anti-monotone rule value function

requires we simply compute the value of that function on the rule corresponding to in order

to obtain an upper-bound. For , Dense-Miner thus uses the value of . Other

anti-monotone constraints, e.g. those discussed in [20], can be exploited by Dense-Miner with

similar ease.

6. Item ordering
The motivation behind reordering tail items in the Generate-Next-Level function is to, in

effect, force unpromising rules into the same portion of the search tree. The reason this strategy is

critical is that in order for a group to be prunable, every sub-node of the group must represent a

rule that fails to satisfy one or more of the constraints. An arbitrary ordering policy will result in a

roughly even distribution of rules that satisfy the constraints throughout the search tree, yielding

little pruning opportunities.

We experimented with several different ordering policies intended to tighten the bounds

provided by the pruning functions. These policies included the obvious ones such as ordering tail

items according to their support, rule support, and confidence, computed respectively as follows:

• ;

• ; and

fβ gp()

h g() h g() C∪ h gp() h gp() C∪
suph gp() i¬ C¬,{ }∪()

g β
y suph g() t g() C¬{ }∪ ∪()

β 0=

β 0= r β 0= r

β 0>

usupg()

h g()

usupg() suph g() C∪()

suph g() i{ }∪()

suph g() i{ } C∪ ∪()

16

•).

We also tried several more obscure policies. The strategy we found to work best by a con-

siderable margin exploits the fact that the computations for and both require a

value , and the larger the value allowed for , the tighter the result-

ing bound. The idea then is to reorder tail items so that many sub-nodes will have a large value for

. This is achieved by positioning tail items which contribute to a large

value of last in the ordering, since tail items which appear deeper in the

ordering will appear in more sub-nodes than those tail items appearing earlier. We have found that

the tail items which contribute most to this value tend to be those with small values for

. This can be seen from Observation 5.4 which yields a larger lower-bound

on when the value of summed over every tail

item is small. The policy used by Dense-Miner is therefore to arrange tail items in decreasing

order of . Compared to a simple lexographic ordering of the items, this pol-

icy reduces runtime (and search tree size) by an order of magnitude or more when mining in

highly dense data-sets such as those used in the upcoming evaluation section.

7. Post-processing
The fact that Dense-Miner finds all frequent, confident, large-improvement rules and

places them into follows from the completeness of a set-enumeration tree search and the cor-

rectness of our pruning rules, as established by the theorems from Section 5. Dense-Miner must

still post-process because it could contain some rules that do not have a large improvement.

Removing rules without a large improvement is non-trivial because improvement is

defined in terms of all of the (exponentially many) proper sub-rules of a rule, and all such rules are

not necessarily generated by the algorithm. A naive post-processor for removing rules without a

large improvement might, for every mined rule, explicitly compute its improvement by generating

and testing every proper sub-rule. Because Dense-Miner is capable of mining many long rules,

such an approach would be too inefficient.

Instead, the post-processor first identifies some rules that do not have a large improvement

by simply comparing them to the other rules in the mined rule set . It compares each rule

 to every rule such that and . If ever it is found that

, then rule is removed because its improvement is not large. This

step alone requires no database access, and removes almost all rules that do not have a large

improvement. Note that a hash-tree can be used to efficiently implement this step by indexing

every rule in in order to quickly identify all sub-rules of any given rule.

To remove any remaining rules, the post-processor performs a set-enumeration tree search

for rules that could potentially prove some rule in does not have a large improvement. The main

suph g() i{ } C∪ ∪() suph g() i{ }∪()⁄

uconf g() uimp g()

y suph g() t g() C¬{ }∪ ∪()≤ y

suph g() t g() C¬{ }∪ ∪()

suph g() t g() C¬{ }∪ ∪()

suph g() i¬ C¬,{ }∪()

suph g() t g() C¬{ }∪ ∪() suph g() i¬ C¬,{ }∪()

suph g() i¬ C¬,{ }∪()

R

R

R

r1 R∈ r2 r2 R∈ r2 r1⊂
conf r1() conf r2()– minimp< r1

R

R

17

difference between this procedure and the mining phase is in the pruning strategies applied. For

this search problem, a group is prunable when none of its derivable rules can prove that some

rule in lacks a large improvement. This is determined by either of the following conditions:

• There exists no rule for which ;

• for all rules such that .

After groups are processed, the post-processor removes any rule from if there exists

some group such that and . Because the search

explores the set of all rules that could potentially prove some rule in does not have a large

improvement, all rules without a large improvement are identified and removed.

Our post-processor includes some useful yet simple extensions of the above for ranking

and facilitating the understanding of rules mined by Dense-Miner as well as other algorithms. The

improvement of a rule is useful as an interestingness and ranking measure to be presented to the

user along with confidence and support. It is also often useful to present the proper sub-rule

responsible for a rule’s improvement value. Therefore, given an arbitrary set of rules, our post-

processor determines the exact improvement of every rule, and associates with every rule its

proper sub-rule with the greatest confidence (whether or not this sub-rule is in the original rule

set). In rule-sets that are not guaranteed to have high-improvement rules (such as those extracted

from a decision tree), the sub-rules can be used to potentially simplify, improve the generality of,

and improve the predictive ability of the originals.

To compute the exact improvement value of every rule in , we must modify the post-pro-

cessing strategy from above only slightly. First, each rule in needs to maintain an upper-bound

 on its improvement. This upper-bound is initialized to the value of (from

Section 5) where . Each time a rule is enumerated by the set-enumeration tree, the

confidence of this rule is compared against the confidence of any rule in that is a superset of

. If is less than , then we make

. The pruning conditions given above must next be weak-

ened so that a group is pruned if and only if it cannot possibly lead to a rule which will affect the

value of for some rule in . These conditions are as follows:

• There exists no rule for which ;

• for all rules such that .

A rule is removed from whenever . To maintain the proper

sub-rule responsible for the improvement value of a rule , one simply has to maintain a pointer

to the rule which most recently caused a modification of .

g

R

r R∈ h g() r⊂
conf r() uconf g()– minimp≥ r R∈ h g() r⊂

r R

g h g() r⊂ conf r() conf h g()()– minimp<
R

R

r

imp_boundr() fz g()

h g() r= rsub
r R

rsub conf r() conf rsub()– imp_boundr()

imp_boundr() conf r() conf rsub()–=

imp_boundr() r R

r R∈ h g() r⊂
conf r() uconf g()– imp_boundr()≥ r R∈ h g() r⊂

r R imp_boundr() minimp<
r

rsub imp_boundr()

18

Though post-processing involves scanning the database, we have found this phase

accounts for at most 15% of the total execution time of our algorithm (whether or not we compute

the exact improvement value for each rule). The reason is that the set of rules and the initial

bounds computed on the improvement of each rule in strongly constrain the search space.

8. Tree-Traversal Strategies
While Dense-Miner is described in Section 4 as performing a breadth-first search of the

tree, any tree-traversal policy is compatible with the techniques proposed up until this point. This

is because we have described how each node in the tree can be processed and pruned using only

local information, and/or information provided by its ancestors in the tree. In this section we

describe optimizations that become possible if we restrict ourselves to a particular tree-traversal

strategy. These optimizations can then be mixed and matched if hybrid traversal strategies are

used.

8.1 Breadth-First Optimizations
A breadth-first traversal strategy is often appropriate since it limits the number of database

passes that must be performed to one for each level of the tree. Since the tree-height is usually

well under 20, a breadth-first traversal strategy is very accommodating of large data-sets and

access of the data through cursors provided by a database engine. Given a breadth-first traversal

strategy, a mining algorithm can exploit several of what we call “cross-tree” optimizations. The

idea is to use not only information provided by ancestors of a given node, but also information

provided by nodes in other branches of the tree. As an example, consider the Apriori algorithm

which generates a candidate -itemset if and only if every one of its -item subsets is

known to be frequent. This pruning technique can be described in the set-enumeration tree frame-

work only if we make use of a cross-tree optimization that searches across branches for each of

the -item subsets of a particular -item candidate.

In the context of Dense-Miner, we could employ a cross-tree support-pruning optimization

that, for each tail item in a group , checks to see if for each is

infrequent. Such information is often provided by the candidate set of some other node at the

same level of in the set-enumeration tree. Since support is such a weak constraint in dense data-

sets, this particular optimization has negligible benefits. However, other cross-tree optimizations

with stronger effects are possible. For example, consider the value from Section 4 which we use

when pruning with the improvement constraint.

Note that this value depends only on the items within the head of a candidate group, and

further, this value is anti-monotone with set containment. A value computed for for some group

 can thus be used by another group if . Note that we have a similar case for

R

R

k k 1–()

k 1–() k

i g h g() u{ }–() i{ }∪ u h g()∈

g

β

β min i∀ h g()∈ sup h g() i{ }–() C¬ i¬,{ }∪(),()≥

β
g1 g2 h g1() h g2()⊂

19

the value in Theorem 5.5 which is monotone with set containment since it reflects the best-

known confidence of any sub-rule of . The cross-tree optimization then is as follows: when

generating a new group , find all groups in the current level of the tree such that

. For , keep the minimum of and over all such groups , and for ,

keep the maximum of and over all such groups.

8.2 Depth-First Optimizations
A depth-first traversal also allows for different cross-tree optimizations. For example, one

can be used to get a better value for in the pruning functions from Section 4, where

. Quite often, given two siblings and in the set-enumeration

tree, we have that . Thus, if a depth-first traversal descends and pro-

cesses node before , we can use the value of to potentially

obtain a tighter bound on in order to try and prune before it is processed.

A pure depth-first traversal of the set-enumeration tree requires a pass over the data-set for

each node in the tree. While this drawback seems difficult to overcome, if we are willing to cache

“projections” of the data-set, a depth-first strategy can sometimes be advantageous. This idea was

originally suggested in [1] in the context of mining frequent itemsets, though it also applies here

with only simple modifications. The idea is based on the following fact: in order to process a node

, we need only consider those transactions of the data-set that contain . By virtue of our

candidate generation procedure, the transactions required to process a node are a subset of the

transactions required to process its parent in the tree. Exploiting this fact, an algorithm can

progressively filter down the data-set as it descends the tree by projecting out any transaction that

fails to contain while processing node . This optimization is beneficial not only because far

fewer records need to be considered when processing a node (particularly at the deeper levels),

but also because we know that each transaction already contains all items in the head of

except one item (the item contained within the set). Thus, there is no need to test

for the presence of these items when counting support. We only test for the presence of item ,

and then test for each of the tail items exactly as before. If is present, then the transaction is

placed into a new cache that will be provided to the children of the current node. Additionally,

item can be removed from these transactions since its presence will be assumed.

While this transaction projection optimization can be used for any traversal strategy,

because a subset of the data-set must be cached with each open node, it is only practical when the

set of open nodes is small. In a depth-first strategy, the number of open nodes is bounded by the

height of the tree , which results in an bound on the number of cached transactions.

Further, since support usually drops significantly with each level, this worst-case estimate is

extremely conservative. Note also that caching need not be performed exclusively in main mem-

z

h g()

g gs
h gs() h g()⊂ β fβ g() fβ gs() gs z

fz g() fz gs()

y

y suph g() t g() C¬{ }∪ ∪()≤ g1 g2
h g2() t g2()∪ t g1() t g2()∪⊂

g1 g2 suph g1() t g1() C¬{ }∪ ∪()

y g2

g h g()

g

gp

h g() g

h g()

i h g() h gp()–

i

i

i

h O h D()

20

ory. Each of the caches, since they are produced as well as accessed in sequential order, could be

stored on disk without complication.

9. Evaluation
This section provides an evaluation of Dense-Miner using two real-world data-sets which

were found to be particularly dense in [7].1 The first data-set is compiled from PUMS census data

obtained from . It consists of 49,046 transac-

tions with 74 items per transaction. Each transaction represents the answers to a census question-

naire, including the age, tax-filing status, marital status, income, sex, veteran status, and location

of residence of the respondent. Similar data-sets are used in targeted marketing campaigns for

identifying a population likely to respond to a particular promotion. Continuous attributes were

discretized as described in [10], though no frequently occurring items were discarded. The second

data-set is the connect-4 data-set from the Irvine machine learning database repository

(). It consists of 67,557 transactions and 43 items per

transaction. This data-set is interesting because of its size, density, and a minority consequent item

(“tie games”) that is accurately predicted only by rules with low support. All experiments pre-

sented here use the “unmarried partner” item as the consequent with the pums data-set, and the

“tie games” item with the connect-4 data-set; we have found that using other consequents consis-

tently yields qualitatively similar results.

The implementation of Dense-Miner used here does not exploit any of the traversal-spe-

cific optimizations suggested in Section 8 in order to provide a traversal-neutral assessment of its

performance. Preliminary experimental results suggest that breadth-first cross-tree optimizations

can improve on the reported runtimes by a factor of two at the lower support values. We have not

yet experimented with any of the depth-first optimizations. Execution times are reported in sec-

onds on an IBM IntelliStation M Pro running Windows NT with a 400 MHZ Intel Pentium II Pro-

cessor and 128MB of SDRAM. Execution time includes runtime for both the mining and post-

processing phases. The post-processor is the one which computes the exact improvement value of

every rule in the result.

The minsup setting used in the experiments is specified as a value we call minimum cover-

age, where . In the context of consequent constrained

association rule mining, minimum coverage is more intuitive than minimum support, since it

specifies the smallest fraction of the population of interest that must be characterized by each

mined rule.

1 Both data-sets are available in the form used in these experiments from http://www.almaden.ibm.com/cs/quest.

http://augustus.csscr.washington.edu/census/comp_013.html

http://www.ics.uci.edu/~mlearn/MLRepository.html

minimum coverage minsup supC()⁄=

21

9.1 Effects of minimum improvement
The first experiment (Figure 5) shows the effect of different minimp settings as minsup is

varied. Minconf in these experiments is left unspecified, which disables pruning with the mini-

mum confidence constraint. The graphs of the figure plot execution time and the number of rules

returned for several algorithms at various settings of minimum support. Dense-miner is run with

minimp settings of .0002, .002, and .02 (dense_0002, dense_002, and dense_02 respectively). We

compare its performance to that of the Apriori algorithm optimized to exploit the consequent con-

straint (apriori_c). This algorithm materializes only those frequent itemsets that contain the conse-

quent itemset.

The first row of graphs from the figure reveals that apriori_c is too slow on all but the

greatest settings of minsup for both data-sets. In contrast, very modest settings of minimp allow

Dense-Miner to efficiently mine rules at far lower supports, even without exploiting the minconf

constraint. A natural question is whether mining at low supports is necessary. For these data-sets,

the answer is yes simply because rules with confidence significantly higher than the consequent

frequency do not arise unless minimum coverage is below 20%. This can be seen from Figure 7,

which plots the confidence of the best rule meeting the minimum support constraint for any given

setting.1 This property is typical of data-sets from domains such as targeted marketing, where

response rates tend to be low without focusing on a small but specific subset of the population.

The graphs in the second row of Figure 5 plot the number of rules satisfying the input con-

straints. Note that runtime correlates strongly with the number of rules returned for each algo-

rithm. For apriori_c, the number of rules returned is the same as the number of frequent itemsets

containing the consequent because there is no minconf constraint specified. Modest settings of

minimp dramatically reduce the number of rules returned because most rules in these data-sets

offer only insignificant (if any) predictive advantages over their proper sub-rules. This effect is

particularly pronounced on the pums data-set, where a minimp setting of .0002 is too weak a con-

straint to keep the number of such rules from exploding as support is lowered. The increase in

runtime and rule-set size as support is lowered is far more subdued given the larger (though still

small) minimp settings.

9.2 Effects of minimum confidence
The next experiment (Figure 6) shows the effect of varying minconf while fixing minimp

and minsup to very low values. With connect-4, we used a minimum coverage of 1%, and with

pums, a minimum coverage of 5%. Minimp was set to .0002 with both data-sets. As can be

extrapolated from the previous figures, the number of rules meeting these weak minimp and min-

1 The data for this figure was generated by a version of Dense-Miner that prunes any group that cannot lead to a rule
on the depicted support/confidence border [8]. This optimization criteria is enforced during mining using the confi-
dence and support bounding techniques from section 5.

22

FIGURE 5. Execution time and rules returned versus minimum coverage for the various algorithms.

FIGURE 6. Execution time of dense_0002 as minconf is varied for both data-sets. Minimum coverage is fixed at
5% on pums and 1% on connect-4.

FIGURE 7. Maximum confidence rule mined from each data-set for a given level of minimum coverage.

1

10

100

1000

10000

100000

0 10 20 30 40 50 60 70 80 90

Ex
ec

ut
io

n
ti

me
 (

se
c)

Minimum Coverage (%)

connect-4

apriori_c
dense_0002
dense_002
dense_02

1

10

100

1000

10000

100000

1e+06

0 10 20 30 40 50 60 70 80 90

Nu
mb

er
 o

f
Ru

le
s

Minimum Coverage (%)

connect-4

apriori_c
dense_0002
dense_002
dense_02

1

10

100

1000

10000

100000

0 10 20 30 40 50 60 70 80 90

Ex
ec

ut
io

n
Ti

me
 (

se
c)

Minimum Coverage (%)

pums

apriori_c
dense_0002
dense_002
dense_02

1

10

100

1000

10000

100000

1e+06

1e+07

0 10 20 30 40 50 60 70 80 90

Nu
mb

er
 o

f
Ru

le
s

Minimum Coverage (%)

pums

apriori_c
dense_0002
dense_002
dense_02

0

500

1000

1500

2000

2500

3000

3500

20 25 30 35 40 45 50 55 60 65

Ex
ec

ut
io

n
ti

me
 (

se
c)

minconf (%)

pums
connect-4

1

10

100

1000

10000

100000

1e+06

20 25 30 35 40 45 50 55 60 65

Nu
mb

er
 o

f
Ru

le
s

minconf (%)

pums
connect-4

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Hi
gh

es
t

Ru
le

 C
on

fi
de

nc
e

(%
)

Minimum Coverage (%)

pums
connect-4

23

sup constraints would be enormous. As a result, with these constraints alone and no minimum

confidence specification, Dense-Miner exceeds the available memory of our machine.

The efficiency of Dense-Miner when minimum confidence is specified shows that it is

effectively exploiting the confidence constraint to prune the set of rules explored. We were unable

to use lower settings of minconf than those plotted because of the large number of rules. As min-

conf is increased beyond the point at which fewer than 100,000 rules are returned, the run-time of

Dense-Miner rapidly falls to around 500 seconds on both data-sets.

9.3 Summary of experimental findings
These experiments demonstrate that Dense-Miner, in contrast to approaches based on

finding frequent itemsets, achieves good performance on highly dense data even when the input

constraints are set conservatively. Minsup can be set low (which is necessary to find high confi-

dence rules), as can minimp and minconf (if it is set at all). This characteristic of our algorithm is

important for the end-user who may not know how to set these parameters properly. Low default

values can be automatically specified by the system so that all potentially useful rules are pro-

duced. Refinements of the default settings can then be made by the user to tailor this result. In

general, the execution time required by Dense-Miner correlates strongly with the number of rules

that satisfy all of the specified constraints.

10. Conclusions
We have shown how Dense-Miner exploits rule constraints to efficiently mine consequent-

constrained rules from large and dense data-sets, even at low supports. Unlike previous

approaches, Dense-Miner exploits constraints such as minimum confidence (or alternatively, min-

imum lift or conviction) and a new constraint called minimum improvement during the mining

phase. The minimum improvement constraint prunes any rule that does not offer a significant pre-

dictive advantage over its proper sub-rules. This increases efficiency of the algorithm, but more

importantly, it presents the user with a concise set of predictive rules that are easy to comprehend

because every condition of each rule strongly contributes to its predictive ability.

The primary contribution of Dense-Miner with respect to its implementation is its search-

space pruning strategy which consists of the three critical components: (1) functions that allow the

algorithm to flexibly compute bounds on confidence, improvement, and support of any rule deriv-

able from a given node in the search tree; (2) approaches for reusing support information gathered

during previous database passes within these functions to allow pruning of nodes before they are

processed; and (3) an item-ordering heuristic that ensures there are plenty of pruning opportuni-

ties. In principle, these ideas can be retargeted to exploit other constraints in place of or in addi-

tion to those already described.

24

We lastly described a rule post-processor that Dense-Miner uses to fully enforce the mini-

mum improvement constraint. This post-processor is useful on its own for determining the

improvement value of every rule in an arbitrary set of rules, as well as associating with each rule

its proper sub-rule with the highest confidence. Improvement can then be used to rank the rules,

and the sub-rules used to potentially simplify, generalize, and improve the predictive ability of the

original rule set.

References
[1] Agarwal, R.; Aggarwal, C.; Prasad, V. V. V.; and Crestana, V. 1998. A Tree Projection Algo-

rithm for Generation of Large Itemsets for Association Rules. IBM Research Report
RC21341, Nov, 1998.

[2] Agrawal, R.; Imielinski, T.; and Swami, A. 1993. Mining Associations between Sets of Items
in Massive Databases. In Proc. of the 1993 ACM-SIGMOD Int’l Conf. on Management of
Data, 207-216.

[3] Agrawal, R.; Mannila, H.; Srikant, R.; Toivonen, H.; and Verkamo, A. I. 1996. Fast Discov-
ery of Association Rules. In Advances in Knowledge Discovery and Data Mining, AAAI
Press, 307-328.

[4] Agrawal, R., and Srikant, R. 1994. Fast Algorithms for Mining Association Rules. IBM
Research Report RJ9839, June 1994. IBM Almaden Research Center, San Jose, CA.

[5] Ali, K.; Manganaris, S.; and Srikant, R. 1997. Partial Classification using Association Rules.
In Proc. of the 3rd Int'l Conference on Knowledge Discovery in Databases and Data Mining,
115-118.

[6] Bayardo, R. J. 1997. Brute-Force Mining of High-Confidence Classification Rules. In Proc.
of the Third Int’l Conf. on Knowledge Discovery and Data Mining, 123-126.

[7] Bayardo, R. J. 1998. Efficiently Mining Long Patterns from Databases. In Proc. of the 1998
ACM-SIGMOD Int’l Conf. on Management of Data, 85-93.

[8] Bayardo, R. J. and Agrawal, R. 1999. Mining the Most Interesting Rules. In Proc. of the
ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, to appear.

[9] Berry, Michael J. A. and Linoff G. S. 1997. Data Mining Techniques for Marketing, Sales
and Customer Support, John Wiley & Sons, Inc.

[10] Brin, S.; Motwani, R.; Ullman, J.; and Tsur, S. 1997. Dynamic Itemset Counting and Impli-
cation Rules for Market Basket Data. In Proc. of the 1997 ACM-SIGMOD Int’l Conf. on the
Management of Data, 255-264.

[11] Clearwater, S. H., & Provost, F. J. 1990. RL4: A tool for knowledge-based induction. In
Proc. of the Second Int’l IEEE Conf. on Tools for Artificial Intelligence, 24-30.

[12] Cohen, W. W. 1995. Fast Effective Rule Induction. In Proc. of the 12th Int’l Conf. on
Machine Learning, 115-123.

[13] Dhar, V. and Tuzhilin, A. 1993. Abstract-driven pattern discovery in databases. IEEE Trans-
actions on Knowledge and Data Engineering, 5(6).

[14] Gunopulos, G.; Mannila, H.; and Saluja, S. 1997. Discovering All Most Specific Sentences
by Randomized Algorithms. In Proc. of the 6th Int’l Conf. on Database Theory, 215-229.

[15] International Business Machines, 1996. IBM Intelligent Miner User’s Guide, Version 1,
Release 1.

25

[16] Klemettinen, M.; Mannila, P.; Ronkainen, P.; and Verkamo, A. I. 1994. Finding Interesting
Rules from Large Sets of Discovered Association Rules. In Proc. of the Third Int’l Conf. on
Information and Knowledge Management, 401-407.

[17] Lin, D.-I and Kedem, Z. M. 1998. Pincer-Search: A New Algorithm for Discovering the
Maximum Frequent Set. In Proc. of the Sixth European Conf. on Extending Database Tech-
nology, 105-119.

[18] Liu, B.; Hsu, W.; and Ma, Y. 1998. Integrating Classification and Association Rule Mining.
In Proc. of the Fourth Int’l Conf. on Knowledge Discovery and Data Mining, 80-86.

[19] Murphy, P. and Pazzani, M. 1994. Exploring the decision forest: An empirical investigation
of Occam’s Razor in decision tree induction. In J. of Artificial Intelligence Research, 1, 257-
275.

[20] Ng, R. T.; Lakshmanan, V. S.; Han, J.; and Pang, A. 1998. Exploratory Mining and Pruning
Optimizations of Constrained Association Rules. In Proc of the 1998 ACM-SIGMOD Int’l
Conf. on the Management of Data, 13-24.

[21] Park, J. S.; Chen, M.-S.; and Yu, P. S. 1996. An Effective Hash Based Algorithm for Mining
Association Rules. In Proc. of the 1995 SIGMOD Conf. on the Management of Data, 175-
186.

[22] Rymon, R. 1992. Search through Systematic Set Enumeration. In Proc. of Third Int’l Conf.
on Principles of Knowledge Representation and Reasoning, 539-550.

[23] Rymon, R. 1994. On Kernel Rules and Prime Implicants. In Proc. of the Twelfth Nat’l Conf.
on Artificial Intelligence, 181-186.

[24] Savasere, A.; Omiecinski, E.; and Navathe, S. 1995. An Efficient Algorithm for Mining
Association Rules in Large Databases. In Proc. of the 21st Conf. on Very Large Data-Bases,
432-444.

[25] Segal, R., & Etzioni, O. 1994. Learning decision lists using homogeneous rules. In Proc. of
the Twelfth Nat’l Conf. on Artificial Intelligence, 619-625.

[26] Schlimmer, J. C. 1993. Efficiently inducing determinations: A complete and systematic
search algorithm that uses optimal pruning. In Proc. of the Tenth. Int’l Conf. on Machine
Learning, 284-290.

[27] Shafer, J.; Agrawal, R.; and Mehta, M. 1996. SPRINT: A Scalable Parallel Classifier for
Data-Mining. In Proc. of the 22nd Conf. on Very Large Data-Bases, 544-555.

[28] Smythe, P. and Goodman, R. M. 1992. An Information Theoretic Approach to Rule Induc-
tion from Databases. IEEE Transactions on Knowledge and Data Engineering, 4(4):301-
316.

[29] Srikant, R.; Vu, Q.; and Agrawal, R. 1997. Mining Association Rules with Item Constraints.
In Proc. of the Third Int'l Conf. on Knowledge Discovery in Databases and Data Mining, 67-
73.

[30] Webb, G. I. 1995. OPUS: An Efficient Admissible Algorithm for Unordered Search. In Jour-
nal of Artificial Intelligence Research, 3:431-465.

[31] Zaki, M. J.; Parthasarathy, S.; Ogihara, M.; and Li, W. 1997. New Algorithms for Fast Dis-
covery of Association Rules. In Proc. of the Third Int'l Conf. on Knowledge Discovery in
Databases and Data Mining, 283-286.

	1. Introduction
	1.1 Paper overview

	2. Related work
	3. Definitions and problem statement
	3.1 The consequent constraint
	3.2 The minimum improvement constraint
	3.3 Problem statement

	4. Set-enumeration search in large data-sets
	4.1 Terminology
	4.2 Top-level algorithm description

	5. Pruning
	5.1 Applying the pruning strategies
	5.2 Pruning strategies
	5.3 Bounding confidence
	5.4 Bounding improvement
	Bounding improvement using the confidence bound
	Bounding improvement directly

	5.5 Bounding support

	6. Item ordering
	7. Post-processing
	8. Tree-Traversal Strategies
	8.1 Breadth-First Optimizations
	8.2 Depth-First Optimizations

	9. Evaluation
	9.1 Effects of minimum improvement
	9.2 Effects of minimum confidence
	9.3 Summary of experimental findings

	10. Conclusions
	References

