
Extending Relational Database Systems to Automatically Enforce Privacy
Policies

Rakesh Agrawal† Paul Bird‡ Tyrone Grandison† Jerry Kiernan† Scott Logan‡ Walid Rjaibi‡

† IBM Almaden Research Center ‡ IBM Toronto Lab
650 Harry Road, San Jose, CA, USA 8200 Warden Ave.,Markham, ON, Canada

{ragrawal, tyroneg, jkiernan}@us.ibm.com {pbird, silogan, wrjaibi}@ca.ibm.com

Abstract

Databases are at the core of successful businesses. Due
to the voluminous stores of personal data being held by
companies today, preserving privacy has become a crucial
requirement for operating a business. This paper proposes
how current relational database management systems can
be transformed into their privacy-preserving equivalents.
Specifically, we present language constructs and implemen-
tation design for fine-grained access control to realize this
goal.

1. Introduction

The pervasive use of computing technology and the in-
creased reliance on information systems have created a
heightened awareness and concern about the storage and use
of private information. This worldwide phenomenon has
ushered in a plethora of privacy-related guidelines and leg-
islations, e.g. the OECD Privacy Guidelines in Europe, the
Canadian Privacy Act, the Australian Privacy Amendment
Act, the Japanese Privacy Code, the Health Insurance Porta-
bility and Accountability Act (HIPAA), and Gramm-Leach-
Bliley Consumer Privacy Rule. Compliance with these leg-
islation has become an important corporate concern. The
current methods employed to address the disclosure com-
pliance problem involve training individuals to be cognizant
of the various regulations and changing organizational pro-
cesses and procedures. However, these approaches are only
a partial solution and need to be augmented with technology
support.

We present constructs for imbuing relational database
systems with fine grained access control (FGAC) and show
how they can be used to enforce disclosure control enun-
ciated in the vision for Hippocratic databases [1]. These
constructs have been designed to be integrated with the rest

of the infrastructure of a relational database system. We
also discuss the implementation of the proposed FGAC con-
structs, building upon the ideas from [6]. Finally, we show
how privacy policies written in a higher-level specification
language such as P3P [3] can be algorithmically translated
into the proposed constructs.

The users of relational databases are requiring that an
FGAC implementation meets the following desiderata:

• The implementation must solve the problem within the
database itself without application changes or applica-
tion awareness of the implementation.

• The implementation must ensure that all users of the
data are covered, regardless of how the data is ac-
cessed.

• The implementation must minimize the complexity
and maintenance of the FGAC policies.

• The implementation must provide the ability to control
access to rows, columns, or cells as desired.

Traditional methods of database access control have re-
lied upon the use of statically defined views, which are logi-
cal constructs imposed over database tables that can alter or
restrict the data seen by a user. Using predefined views as
the method for FGAC works well only when the number of
different restrictions is few or the granularity of the restric-
tions is such that it affects large, easily identified groups of
users. When these conditions are not true, view definitions
may become complex in an effort to accommodate all the
restrictions in one view. This complexity can strain system
limits and can make maintenance of the views difficult.

Consider the use of a large number of views, each one
implementing restrictions for a specific set of users. One
issue that arises immediately is how to correctly route user
requests to the view that is appropriate to them. Often, the
solution chosen is to resolve the request in the application,

not in the database. Moreover, if a user can bypass the view
when accessing data, for example by having direct access to
the underlying tables, then the restrictions are not enforced.

Given the shortcomings of the traditional methods of im-
plementing FGAC, some database vendors have proposed
solutions that do not rely on the use of views to control ac-
cess to tabular data. For instance, the Oracle Virtual Private
Database [5, 7] solution allows users to define a security
policy, which is a function written in PL/SQL that returns
a string representing a predicate, and to attach the security
policy to a table. When that table is accessed, the secu-
rity policy is automatically enforced. Sybase Row Level
Access Control [9] allows users to define access rules that
apply restrictions to retrieved data. The related work sec-
tion further discusses the Oracle and Sybase approaches.
Microsoft SQL Server primarily supports traditional view
based access control, though they have a feature called row
level permissions. However, row level permissions seem
to be usable only with table hierarchies. In DB2, support
for FGAC is currently provided through traditional mecha-
nisms based on views, triggers and special registers.

The remainder of this paper is organized as follows. Sec-
tion 2 proposes FGAC constructs that allow restrictions to
be expressed on database accesses. Aside from row and
column level restrictions that respectively restrict the set of
rows and columns of a table, cell level restrictions can be
specified to limit access to specific fields of a row. Sec-
tion 3 describes how restrictions expressed in terms of the
proposed constructs can be enforced using dynamic views.
Section 4 presents an algorithm for translating a P3P pri-
vacy policy into the proposed FGAC constructs. Section 5
discusses related work, and Section 6 presents concluding
remarks. Appendix A argues for extending the function-
ality of current relational database systems with cell level
access control.

2. Language Constructs

We provide constructs that allow restrictions to be spec-
ified on access to data in a table at the level of a row, a col-
umn, or a cell (i.e., individual column-row intersections).
Privacy policies specified in high-level languages such as
P3P can be translated into these constructs, or one could
specify the policy directly using these constructs.

The proposed facility is complimentary to the current ta-
ble level authorization mechanisms provided by commer-
cial database systems using thegrant command [2]. While
grant controls whether a user can access a table at all, the
proposed constructs define the subset of the data within a
table that the user is allowed to access. Conceptually, a re-
striction defines a view of the table in which inaccessible
data has been replaced by null values. As discussed in [6], it
is possible to use either “table semantics” or “query seman-

create restriction restriction-name
on table-x
for auth-name-1 [exceptauth-name-2]
(((to columnscolumn-name-list)

| (to rows [wheresearch-condition])
| (to cells(column-name-list [wheresearch-condition])+)

)
[for purpose purpose-list]
[for recipient recipient-list]

)+
command-restriction

Figure 1. Fine grained restriction syntax

tics”. With query semantics, if all the values in a row are
hidden by a restriction, then the row is omitted altogether
from the view. With table semantics, the row would instead
be retained.

Figure 1 gives the syntax of a fine grained restriction
command. It states that those in auth-name-1 except those
in auth-name-2 are allowed only restricted access to table-x.
The keywordspublic (i.e., all users),group, role, anduser
can be used to qualify the authorized names. Table-x can be
any table expression.

A restriction can be specified at the level of a column
(Section 2.1), a row (Section 2.2), or a cell (Section 2.3).
More than one restriction can be specified on a table for the
same user (Section 2.4).

A restriction may additionally specify purposes and/or
recipients [1, 3, 6] for which the access is allowed. If no
purpose or recipient is specified, then the restriction applies
to all purposes and recipients respectively. If a purpose or
recipient is specified, the user’s access is limited to only the
specified purpose-recipient combinations.

Akin to the database system variableuser that can be
referenced in queries and returns the id of the user issuing
the query, the new system variablespurposeandrecipient
return the list of purposes and recipients from the current
query context [6]. These values in turn determine the re-
strictions for the current query.

The command-restriction that appears as the last element
of the syntax has the following form and states that access
can be restricted to any combination of select, delete, insert,
or update commands:

restricting access to(all | (select| delete| insert | update)+)

The discussion below will use, for illustration, the Cus-
tomer table with the following schema: Customer (idinte-
ger, namechar(32), phonechar(32)).

2.1 Column Restriction

A column restriction specifies a subset of the columns in
table-x that auth-name-1 is allowed to access. The follow-
ing restriction, named r1, ensures that only the id column of
Customer is accessed by any database user:

create restriction r1
on Customer
for public
to columns id
restricting access to all

The restriction r2 below ensures that members of the
account group and user Bob have only select access to
columns name and phone.

create restriction r2
on Customer
for group acct,userBob
to columnsname, phone
restricting access to select

2.2 Row Restriction

A row restriction gives the subset of rows in table-x that
auth-name-1 is allowed to access. This subset is specified
using a search-condition over table-x. The restriction r3 be-
low ensures that every access to Customer is qualified by
the predicate, name =user.

create restriction r3
on Customer
for public
to rows wherename =user
restricting access to all

If user Bob issuesselect * from Customer, he would
see id, name and phone for those rows where name equaled
Bob.

2.3 Cell Restriction

A cell restriction defines the row-column intersections
that auth-name-1 is allowed to access. It is possible to
specify multiple column-name lists, each possibly anno-
tated with a search-condition. A search-condition is a cor-
related subquery with an implicit correlation variablet de-
fined over the tuples of table-x. Access to the columns in
column-name-list for each individual row identified byt
is conditionally granted depending upon the result of the
search condition. If no search-condition is given, then ac-
cess is granted to all column values in column-name-list in
table-x. If the search condition ignores correlation variable,
then access is granted or denied to all columns values in

column-name-list in table-x, depending upon the result of
the search-condition.

The following is an example of a cell restriction used to
enforce individual user’s privacy preferences expressed as
opt-in/out choices. Assume that for the purpose of market-
ing, Bob is allowed to see name, but his access to phone is
allowed only if the user has opted-in to revealing her phone
number.

create restriction r4
on Customerfor user Bob,
to cells name,

(phonewhere exists(
select1
from SysCat.ChoicesCustomer c
wherec.ID = Customer.IDand c.C1 = 1))

for purpose marketing
for recipient others

restricting access to select

The above restriction specifies cell restrictions for two
column-name-lists: The first list contains the name column,
and the second contains the phone column. The restriction
allows Bob access to name, only if the variablepurpose in-
cludes marketing, andrecipient includes others. Otherwise,
all values of the name column will be null for Bob.

The second list of columns has a search-condition asso-
ciated with it since access to phone is dependent upon indi-
vidual user choices. The search-condition comprises an ex-
istential subquery that uses the implicit correlation variable
Customer. For each row in Customer, the subquery verifies,
using the SysCat.ChoicesCustomer table that stores indi-
vidual opt-in/out choices, whether the user has opted-in for
the disclosure of her phone number (represented by a col-
umn value of 1).

2.4 Combining Multiple Restrictions

If multiple restrictions have been defined for a useru and
a tableT , thenu’s access toT is governed by the combina-
tion of these restrictions.

Assume initially that a user associates with a query a sin-
gle purpose and a single recipient. We consider two design
choices for combining multiple restrictions:

• Intersection— Useru is allowed access to data defined
by the intersection of all applicable restrictions. The
details are shown in Table 1.

• Union — Useru is allowed access to data defined by
the union of all applicable restrictions. The details are
shown in Table 2.

If the commands specified in the command-restriction
clauses of the restrictions being combined are different, they

row column cell

row

The search-conditions of individual row
restrictions are and’ed together to define
the intersection of rows accessible to a
user.

The row restriction limits the rows ac-
cessible to the user. The column restric-
tion further limits the columns within the
rows accessible to the user.

The row restriction limits the rows acces-
sible to the user. Within each row, the
cell restriction further limits the access
to the cells that qualify the cells’ search-
condition.

column
The user’s access is limited to those
columns that appear in both of the col-
umn restrictions.

Column and cell restrictions intersect
to limit access to only those columns
that appear in both the restrictions. In
addition, the cell restriction’s search-
condition further limits accessible cells
within a column.

cell

The search-conditions are and’ed to-
gether and the user is allowed access to
a cell if the composite condition is satis-
fied for the cell. The value of the com-
posite condition for a cell that does not
appear in both the restrictions is false.

Table 1. Combining restrictions with intersection

row column cell

row
The search-conditions of individual row
restrictions are or’ed together to define
the union of rows accessible to a user.

The user is given access to all the cells
for any row that satisfies the row restric-
tion. Additionally, the user is allowed ac-
cess to all the cells in any of the columns
that satisfies the column restriction, ir-
respective of whether the corresponding
rows satisfy the row restriction.

The user is given access to all the cells
in any of the rows that satisfy the row
restriction. Additionally, the user is al-
lowed access to all other cells that satisfy
the cell restriction’s search-condition, ir-
respective of whether the corresponding
rows satisfy the row restriction.

column
The user is allowed access to a column
if it appears in either of the two column
restrictions.

The user is given access to all the cells
in any column appearing in the column
restriction, regardless of whether the cell
restriction is satisfied for these cells. For
cells in a column for which the column
restriction does not apply, access is given
if the cell restriction is satisfied.

cell

The search-conditions are or’ed together
and the user is allowed access to a cell
if the composite condition is satisfied for
the cell.

Table 2. Combining restrictions with union

Policy Translator

Query Rewriting

FGAC
Restrictions

Privacy
Policy User Query

with purpose
& recipient

Privacy Catalogs

RDBMS

PR PT

Figure 2. Implementation architecture

are respectively and’ed or or’ed depending upon the choice
of intersection or union semantics.

Multiple restrictions can be combined in any order, both
with intersection and union semantics. With the intersec-
tion semantics, the user’s access to data decreases as addi-
tional restrictions are applied. Conversely, with union se-
mantics, access to data increases as additional restrictions
are applied.

We prefer intersection semantics over union since addi-
tional restrictions should intuitively decrease a user’s access
to information.1

Finally, if a query is annotated with multiple purpose-
recipient pairs, instead of a single pair, then restrictions gov-
erning access to any of the pairs become relevant for the
query. These restrictions are then combined as above. Note
that once a user’s access to a table has been restricted, the
user can only access the data allowed for the purposes and
recipients specified in the restrictions.

3. Implementation

We next present a design for implementing the proposed
constructs, building upon the ideas presented in [1, 6]. In
this and the remainder of the paper, we focus on cell re-
strictions limited to select statement access. Figure 2 shows
the overview of the design. The policy translator accepts a
privacy policy (written in, for example, P3P) and metadata

1It is conceivable to use mixed modes for combining restrictions. For
example, intersection could be used to combine multiple row restrictions
while union could be used to combine multiple column or cell restric-
tions. However, the semantics of such combinations can become quite
complex as the restriction imposed by a combination may no longer be
order-independent.

stored in privacy catalogs and generates cell restrictions that
implement the policy. The schema of the privacy metadata
catalogs shown in Figure 2 used to drive the translation of
P3P privacy policies into cell level restrictions are given be-
low.

PR (purp-recipchar(18),
p3ptypechar(32),
choicetabnamechar(32),
choicecolnamechar(32))

PT (p3ptypechar (32), tabnamechar(32), colnamechar(32))

Table PR stores, for each purpose, recipient and p3p data
type pair, the (table name-column name) pair that records
individual user opt-in/out choice, should any choice be
available for that combination. Table PT stores, for each
P3P data type, the table names and column names which
store values of these P3P types.

Figure 3 gives the algorithm used for enforcing the fine
grain restrictions. For ease of exposition, we assume there is
a single purpose-recipient pair associated with a query and
there is at most a single restriction which is relevant for the
query. The enforcement algorithm combines the restrictions
relevant to individual queries annotated with purpose and
recipient information and transforms the user’s query into
an equivalent query over a dynamic view that implements
the restriction.

In detail, Line 1 iterates over each table referencet in
a queryQ. Line 2 accesses metadata to determine if there
is a restrictionr governing the usage oft by useru who is
submitting the queryQ. If no such restriction exists, thent
remains unmodified inQ. Otherwise, Lines 3 and 4 replace
each reference to tablet in queryQ with a reference to a
dynamic viewv.

The generation of the dynamic viewv is implemented in
Lines 5 through 25. The viewv is a select statement which
conditionally projects each columnc ∈ t. Line 7 searches
for a column reference toc ∈ r. If no such reference exists
with the purpose/recipient of queryQ, then the useru is not
allowed access toc and Line 8 thus projects a null value
for all values ofc. Otherwise, Line 10 searches for a where
clause associated withc ∈ r. If no such clause exists, then
u is granted unconditional access toc. Otherwise, Line 15
outputs the condition of the where clause into a SQL case
statement which verifies the condition before outputting the
value ofc (on Line 18). If the condition is false, access to
the column value is denied and Line 19 outputs a null value
for c.

4. Translating Privacy Policies

It is expected that the privacy policies will likely be writ-
ten in some high-level policy language. The following illus-

1 for each table referencet in queryQ do begin
2 if (exists a restrictionr pertaining tot for Q) then begin
3 createa dynamic viewv ∈ Q overt
4 replaceeach reference tot ∈ Q with a reference tov ∈ Q

// create the dynamic viewv using
// the following print statements
//

5 print ”select”
6 for eachcolumnc ∈ t do begin

// cp, cr are the purposes, recipients
// of columnc in restrictionr
// Qp, Qr are the purpose, recipient of queryQ
//

7 if (c 6∈ r|Qp ∈ cp ∧Qr ∈ cr

// c isn’t included in the restrictionr
// access toc is thus prohibited
//

8 print ”null”
9 else begin

// The whereClause function returns
// the predicate associated withc
// that is specified in the restriction
//

10 let w = whereClause(c)
11 if w = null then

// There is no “where” condition
// governing the use ofc ∈ r, thus access
// to all column values is granted unconditionally
//

12 print c.colname
13 else begin

// Implement the “where” condition
// using a SQL case statement to grant
// only conditional access to the columnc
//

14 print ”case when exists (”
15 print w.condition
16 print ”)”
17 print ”then”
18 print c.colname
19 print ”else null end as”
20 print c.colname
21 end
22 end
23 end
24 print ”from”
25 print t.tablename
26 end

Figure 3. Algorithm for enforcing fine grained
cell level restrictions using a Hippocratic
database system

trates the basic syntax of the P3P policy specification lan-
guage [3].

<POLICIES> ...
<POLICY name = "Policy_Name1" > ...

<STATEMENT>
...
<PURPOSE>

stated-purpose
[required = ("always"|"opt-in"|"opt-out")]

</PURPOSE>
<RECIPIENT>

stated-recip
[required = ("always"|"opt-in"|"opt-out")]

</RECIPIENT>
<RETENTION> retention_val </RETENTION>
<DATA GROUP>

<DATA ref = data-ref-val>
...

</DATA GROUP>
</STATEMENT>

</POLICY>
<POLICY>

...
</POLICY>
...

</POLICIES>

The process of transforming a policy like the one above
into fine grained restrictions involves: (1) parsing the policy
to extract the list of statements, (2) mapping data abstrac-
tions into their implementation specific equivalents, e.g. in
the above specification this would mean mapping data-ref-
val to its corresponding table name(s) and column name(s),
(3) structuring the choice tables which record individual
user opt-in/out choices (in some cases, this may not be nec-
essary since there may be no such choices), and (4) gener-
ating the restriction statements. Assuming that data-ref-val
maps to columns A and B of table T, the above abstract
specification would lead to the following restriction being
constructed:

create restriction Policy Name1
on T
for public
to cellsA,B

[whereopt-in-out-conditions]
for purpose stated-purpose
for recipient stated-recip

restricting access to select

Figure 4 is a detailed example of a privacy policy, for a
fictional Healthcare provider.

The metadata contains the information needed to asso-
ciate ”#personal” (personal information) and ”#medical”
(medical information) with database tables which store this
information. Personal information maps to the name, SSN,
address, email and DOB fields of the Patients table, while
medical information maps to the xray, pharmacy, family,
appointment and lifestyle fields of the Patients table. Thus,

...
<!-- Statement1 -->
<STATEMENT>

<CONSEQUENCE>
Encodes that personal and medical information
can be accessed for emergency purposes
by ourselves

</CONSEQUENCE>
<PURPOSE>

<other-purpose>
Emergency

</other-purpose>
</PURPOSE>
<RECIPIENT><ours/></RECIPIENT>
<RETENTION><stated-purpose/></RETENTION>
<DATA-GROUP>

<DATA ref = "#personal"/>
<DATA ref = "#medical">

<CATEGORIES>
<health/>

</CATEGORIES>
</DATA>

</DATA-GROUP>
</STATEMENT>

<!-- Statement2 -->
<STATEMENT>

<CONSEQUENCE>
Encodes that we and drug companies
with the same data usage policies
can access personal and medical information
for new_drug_research on an opt-out basis

</CONSEQUENCE>
<PURPOSE><develop/></PURPOSE>
<RECIPIENT>

<ours required="opt-out"/>
<same required="opt-out"/>

</RECIPIENT>
<RETENTION><stated-purpose/></RETENTION>
<DATA-GROUP>

<DATA ref = "#personal"/>
<DATA ref = "#medical">

<CATEGORIES>
<health/>

</CATEGORIES>
</DATA>

</DATA-GROUP>
</STATEMENT>
...

Figure 4. A sample privacy policy written for
a health care provider

create restriction Statement1
on Patients
for public
to cells Name, SSN, Address, Email, DOB,

XRay, Pharmacy, Family,
Appointment, Lifestyle

purposeEmergency
recipient ours

restricting access to select

create restriction Statement2.1
on Patients
for public
to cells Name, SSN, Address, Email, DOB,

XRay, Pharmacy, Family,
Appointment, Lifestyle

where
exists(

select1
from SysCat.ChoicesPatients cp
wherecp.ID = Patients.ID

and cp.C1 = 1)
for purpose develop
for recipient ours

restricting access to select

create restriction Statement2.2
on Patients
for public
to cells Name, SSN, Address, Email, DOB,

XRay, Pharmacy, Family,
Appointment, Lifestyle

where
exists(

select1
from SysCat.ChoicesPatients cp
wherecp.ID = Patients.ID

and cp.C2 = 1)
for purpose develop
for recipient same

restricting access to select

Figure 5. Translation of the privacy policy in
Figure 4 into fine grained cell level restric-
tions

the P3P healthcare policy given in Figure 4 is translated into
the restrictions given in Figure 5.

For simplicity, the restrictions in Figure 5 assume that all
data types in a P3P statement are contained in a single table.

The ChoicesPatients table is created by the database
administrator to record individual opt-in/out decisions de-
scribed in the privacy policy. In Figure 5, C1 represents the
choice to allow DrugResearch to see personal and medical
data if the drug research is being conducted by the health-
care company itself. Choice C2 is the option to allow usage
of the personal and medical data for drug research by other
healthcare companies having the same privacy policy as this
company. The example illustrates the basic steps involved
in the translation process.

Figure 6 gives the pseudo-code showing the steps in-
volved in transforming P3P policy into our proposed
constructs. A unique restriction name, needed for the
command, is generated on Line 5. Line 7 uses the
mapP3PStatementToTablefunction to recover the table
name which stores the information described by the data
types in the P3P statement. This metadata has been pop-
ulated by the database administrator. On Line 8, the the
restriction is set topublic to apply to all users. Line 10 uses
themapP3PDataTypeToColumnsfunction to retrieve the
column names that store information described by the P3P
data types in the statement. Again, this information has
been prepared and supplied by the database administrator
and stored in metadata tables.

The functionmapP3PPurposeToChoiceTableaccepts
a statement id and returns the table storing individ-
ual user choices for this statement. The function
mapP3PPurposeToChoiceColumnaccepts a statement-
purpose pair and returns the column in the choice table
which records the corresponding users’ choices. Both these
functions are driven from metadata.

5. Related Work

5.1 Oracle

Oracle has introduced a fine-grained access control ca-
pability via their security policy concept [5, 7] which, once
defined on a table or view, modifies any future query against
that table by adding a predicate into the query. In essence,
they have allowed row restrictions traditionally handled by
views to be dynamically added to queries [8].

The fundamental difference between the Oracle ap-
proach and the one in this paper is that Oracle modifies the
query by adding predicates while the approach in this paper
leaves the query alone and effectively modifies the table be-
ing accessed by injecting a dynamically created view of the
table between the query and the target table.

1 for eachstatements in policy do begin
2 for eachpurposep in s do begin
3 for each recipientr in s do begin

4 print ”create restriction ”
5 print generate-unique-restriction-name()
6 print ” on table ”
7 print mapP3PStatementToTable(s)
8 print ” for public ”
9 print ” to cells ”
10 print mapP3PDataTypeToColumns(s)

11 if (p.required != always)then
12 print ”where exists (select 1 from ”
13 + mapP3PPurposeToChoiceTable(s)
14 + ” p where p.ID = ”+ mapP3PStatementToTable(s) +”.ID
15 and ”+ mapP3PPurposeToChoiceColumn(s,p) + ”= 1))”

16 if (r.required != always)then
17 print ”and exists (select 1 from ”
18 + mapP3PRecipientToChoiceTable(s)
19 + ” r where r.ID = ”+ mapP3PStatementToTable(s) +”.ID”
20 + ”and ”+ mapP3PRecipientToChoiceColumn(s, r) + ”= 1))”
21 print ”for purpose” +p.name
22 print ”for recipient” + r.name
23 end
24 end
25 end
26 print ”restricting access to select”

Figure 6. Algorithm for translating a P3P pri-
vacy policy into fine grained cell level restric-
tions

The Oracle approach shares the following advantages
with our design:

• It is pervasive to all users of the table.

• It does not require application modification.

• It does not require a large number of statically defined
views.

Its primary disadvantages are:

• It requires user programming of a strictly defined
“predicate producing” procedure in order to implement
a security policy.

• It does not address column or cell restrictions.

5.2 Sybase

Sybase Adaptive Server version 12.5 has introduced a
feature called row level access control [9] that enables the
database owner or table owner to restrict access to a table’s

rows by defining access rules and binding those rules to the
table. Access to data can be further controlled by setting
application contexts and creating login triggers.

Access rules apply restrictions to retrieved data, enforced
on select, update and delete operations. Adaptive Server
enforces the access rules on all columns that are read by
a query, even if the columns are not included in the select
list. Using access rules is similar to using views, or using
an ad hoc query with where clauses. The query is compiled
and optimized after the access rules are attached, so it does
not cause performance degradation. Access rules provide
a virtual view of the table data, the view depending on the
specific access rules bound to the columns.

Our proposal differs from the Sybase row level access
control solution as follows:

• It allows restrictions to be defined on columns and cells
in addition to rows.

• A restriction can contain as many predicates as desired
and this is done in a single statement (i.e., create re-
striction). Sybase would need to create a separate ac-
cess rule for each predicate, and’ing them, and then
binding them to the appropriate columns.

6. Conclusion

Databases of the future must ensure the privacy of the
data subjects that they store information on. The security
functionality offered by current commercial database prod-
ucts is not adequate to enforce privacy compliance. The
main contributions of this paper are:

• Language constructs for specifying restrictions at the
level of a row, a column, or a cell that integrate well
with the rest of the relational database infrastructure.

• Semantics of combining multiple restrictions.

• Design for implementing the proposed constructs.

• Algorithm for translating a P3P privacy policy into the
proposed constructs.

Our fond hope is that this paper will serve to create dia-
log on the right functionality that the database systems must
support and the efficient ways of its implementation.

Acknowledgments We wish to thank Alvin Cheung for
useful comments on the paper.

References

[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic
databases. In28th Int’l Conference on Very Large Databases,
Hong Kong, China, August 2002.

[2] D. Chamberlin. A Complete Guide to DB2 Universal
Database. Morgan Kaufmann, 1998.

[3] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-
Marshall, and J. Reagle.The Platform for Privacy Prefer-
ences 1.0 (P3P1.0) Specification. W3C Recommendation,
April 2002.

[4] US Department of Health and Human Services.
http://www.hhs.gov/ocr/hipaa.

[5] T. Kyte. Fine-grained access control. Technical report, Oracle
Corporation, 1999.

[6] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan,
Y. Xu, and D. DeWitt. Limiting disclosure in Hippocratic
databases. In30th Int’l Conf. on Very Large Data Bases,
Toronto, Canada, August 2004.

[7] A. Nanda and D. K. Burleson.Oracle Privacy Security Au-
diting. Rampant, 2003.

[8] M. Stonebraker and E. Wong. Access control in a relational
data base management system by query modification. In
ACM/CSC-ER, 1974.

[9] Sybase. Sybase Adaptive Server Enterprise 12.5, Sys-
tem Administration Guide, Row Level Access Control.
http://sybooks.sybase.com/onlinebooks.

ID Name HomePhone WorkPhone Salary
1 Alicia Campbell 408-418-5198 408-419-9111 10,000
2 Bob Bobbett 408-418-5198 408-419-9112 20,000
3 Carl Abrahams 408-333-6633 408-419-9113 30,000
4 Dan Charmer 408-432-8644 408-419-9114 40,000
5 Ellen Generous 408-555-1235 408-419-9115 50,000

Table 3. Table of BlueCo’s clients

Name HomePhone OfficePhone
Alicia Campbell - 408-419-9111
Bob Bobbett 408-418-5198 -
Carl Abrahams 408-333-6633 408-419-9113

Table 4. Cell level enforcement

A. The Case for Cell Level Enforcement

Compliance with current privacy legislation mandates
that the user’s consent be obtained for the use/disclosure
of the personal information stored about them. Row or col-
umn level restriction are not adequate for modeling scenar-
ios where individuals may make opt-in/out choices with dif-
ferent aspects of their information. To achieve this goal of
minimal disclosure while allowing useful tasks to be per-
formed on relevant information, cell level enforcement is
key. A similar case for cell level enforcement has been
made in [6].

Consider a scenario requiring adherence to the HIPAA
regulation [4]. BlueCo is a healthcare provider that stores
personal data on individuals who enroll in its plans. BlueCo
has affiliations with a number of hospitals, research institu-
tions, and marketing companies. Under HIPAA, any indi-
vidually identifiable healthcare information held or trans-
mitted by BlueCo is considered protected information. For
any use or disclosure of protected health information that is
not for treatment, payment, or health care operation and that
is not otherwise permitted (e.g. law enforcement), BlueCo
must get the data subject’s consent.

Assume a simplified version of BlueCo’s database given
in Table 3. ResearchCo is an epidemiological research
institute that periodically harvests BlueCo’s data. Under
HIPAA, all clients must give their consent for release of
their home and office numbers.

Alicia Campbell opts out of having her home phone
number, but does not mind if BlueCo discloses her office
number. Suppose John Seeker, a researcher at ResearchCo
issues the following query:

selectname, homephone, officephone
from clientswheresalary≤ 30000

Given the choices that Alicia has made, only her name
and office phone number should be displayed as shown in
Table 4.

Name HomePhone OfficePhone
Carl Abrahams 408-333-6633 408-419-9113

Table 5. Row level enforcement

Database systems employing row level controls restrict
disclosure to all information in a particular row, when a re-
striction is only on particular columns in that row. Thus, us-
ing conventional row level controls, the results for the query
are those shown in Table 5. Both Alicia and Bob are no
longer present in the result, even though they have agreed
that one of their two phone numbers can be disclosed.

This simple example illustrates the inadequacy of row
level restrictions. Similar arguments can be made for col-
umn level restrictions. They are not flexible enough to allow
disclosure of non-sensitive data and suppression of sensitive
data on a subject by subject basis.

