
Server-Centric P3P

Rakesh Agrawal Jerry Kiernan Ramakrishnan Srikant Yirong Xu

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120�

ragrawal, kiernan, srikant, yirongxu � @almaden.ibm.com

Abstract

Platform for Privacy Preferences (P3P) is the most sig-
nificant effort currently underway to enable web users to
gain control over their private information. P3P pro-
vides mechanisms for web site owners to express their pri-
vacy policies in a standard format that a user can pro-
grammatically check against her privacy preferences to
decide whether to release her data to the web site. We
discuss architectural alternatives for implementing P3P
and present a server-centric implementation that reuses
database querying technology, as opposed to the prevail-
ing client-centric implementations based on specialized en-
gines. Not only does the proposed implementation have
qualitative advantages, our experiments indicate that it
performs significantly better than the sole public-domain
client-centric implementation and that the latency intro-
duced by preference matching is small enough for real-
world deployments of P3P.

1. Introduction

The privacy of personal information on the Internet has be-
come a major concern for governments, businesses, me-
dia, and the public [5] [12] [13] [18] [24]. Opinion sur-
veys consistently show that privacy concerns are a leading
impediment to the further growth of web-based commerce
[10] [25] [26] [27]. Initial efforts by web sites to disclose
their privacy policies have had limited impact because these
policies were often too lengthy for users to read and were
written in a language too difficult for users to understand.

Platform for Privacy Preferences (P3P), developed by
the World Wide Web Consortium (W3C), is the most sig-
nificant effort underway to enable users to gain more con-
trol over what information a web-site collects. It provides
a way for a web site to encode its data-collection and data-
use practices in a machine-readable XML format, known
as a P3P policy [9], which can be programmatically com-
pared against a user’s privacy preferences [8]. The current
P3P standard only provides a mechanism for users to check
a web site’s privacy policy before they release personal in-
formation to the site; mechanisms for enforcing that sites
act according to their stated policies are beyond its scope
[9].

In this paper, we propose a server-centric architecture
for P3P that reuses database technology, as opposed to
the prevailing client-centric implementations based on spe-
cialized engines. The server-centric architecture has sev-
eral advantages (discussed in Section 4.2) including: set-
ting up the infrastructure necessary for ensuring that web
sites act according to their stated policies, allowing P3P
to be deployed in thin, mobile clients that are likely to
dominate Internet access in the future, and allowing site
owners to refine their policies based on the privacy pref-
erences of their users. Our experiments indicate that the
proposed server-centric architecture performs significantly
better than the sole public-domain client-centric implemen-
tation [17]. These experiments also show that the proposed
architecture has the necessary performance for it to be used
in practical deployments of P3P.

1.1. Related Work

P3P is a nascent standard (it became a W3C Recommen-
dation on April 16, 2002) and the tools for implementing
P3P are still in their infancy. A survey of current P3P im-
plementations is available in [19]. Two prominent imple-
mentations of P3P are: AT&T Privacy Bird and the imple-
mentation of compact P3P policies in the Microsoft Inter-
net Explorer. In Section 3, we discuss these and some tools
to aid P3P implementation.

A vision for Hippocratic databases was recently pre-
sented in [1]. Inspired by the privacy tenet of the Hippo-
cratic Oath that has guided the conduct of physicians for
centuries, Hippocratic databases make privacy their central
concern. The paper proposes a strawman design for Hip-
pocratic databases, identifies the technical challenges and
problems in designing such databases, and suggests poten-
tial solutions.

The work presented in this paper is complementary to
the work on Hippocratic databases. Our focus in this pa-
per is on the specific problem of how database technol-
ogy can be used for checking P3P privacy policies against
users’ privacy preferences, while the Hippocratic database
paper is mostly focused on how to enforce a given privacy
policy. The lessons from this study can be applied to the
implementation of the Privacy Constraint Validator mod-
ule in the Hippocratic database design. As we mentioned
earlier, P3P does not specify any mechanisms for ensuring
that sites act according to their stated policies. Thus mech-

1



anisms developed for Hippocratic databases may provide
the basis for designing enforcement in P3P.

Related work includes research on integrating produc-
tion rules with database systems (see [15] for an overview).
The dominant application of the database rule systems is
to monitor events (mostly updates) and cause specified
actions to be triggered if certain conditions are satisfied.
P3P preferences expressed in APPEL also consist of a set
of rules. However, the APPEL rules have little in com-
mon with the rules studied in database systems. APPEL
rules that define a user’s preference are not installed in the
database. They are really queries that are processed at the
time a user accesses a web site to determine if the web-
site’s policy conforms to the user’s privacy wishes at that
moment.

1.2. Paper Layout

The rest of the paper is structured as follows. We give a
brief overview of P3P in Section 2 and describe the current
P3P implementations in Section 3. We give the architec-
ture of our proposed server-centric implementation in Sec-
tion 4, and discuss the pros and cons of the server-centric
approach. We give the algorithms for storing P3P polices
into relational tables, and converting APPEL preferences
into either SQL or XQuery in Section 5. We present the
results of our performance experiments in Section 6 and
conclude with some remarks and directions for future work
in Section 7.

We assume familiarity with the basic concepts of XML
[28]. Throughout the paper, we use “element” and “at-
tribute” as in the XML specification. For clarity, we will
sometimes refer to an APPEL element as an “expression”.
Their subelements will be correspondingly called “subex-
pression”. A condensed version of this report appears in
the proceedings of the the 19th International Conference
on Data Engineering (ICDE 2003) [2].

2. Overview of P3P
The P3P protocol has two parts:

1. Privacy Policies: An XML format in which a web site
can encode its data-collection and data-use practices
[9].

2. Privacy Preferences: A machine-readable specifica-
tion of a user’s preferences that can be programmati-
cally compared against a privacy policy [8].

W3C has standardized the XML format for describing
privacy policies and it is now a W3C Recommendation
[9]. A user may specify privacy preferences in APPEL
[8], which is currently a working draft in W3C.1 APPEL
provides an XML format for expressing preferences and an
algorithm for matching preferences against policies.

In the rest of this section, we briefly review the core fea-
tures of the P3P policy language as well as APPEL. A web

1P3P does not require that APPEL be necessarily used as the language
for expressing privacy preferences. However, we are not aware of any
alternate proposal.

site can have different privacy policies governing different
parts of the site. P3P provides for a Reference File in which
a site can set up associations between web pages and poli-
cies. We describe this mechanism in Section 2.3. See [9]
and [8] for complete specifications of P3P and APPEL (re-
spectively).

2.1. Policy Description

P3P policies are described in XML format as a sequence
of STATEMENT elements that have the following subele-
ments:�

CONSEQUENCE: describes the intended purpose for
collecting information in human-readable text.�
PURPOSE: describes purposes for which informa-
tion is collected. Multiple purposes can be listed in
a STATEMENT if all of them have the same values
for RECIPIENT, RETENTION and DATA-GROUPS;
otherwise, they are specified in different STATE-
MENT elements.�
RECIPIENT: describes the intended users of the col-
lected information. Multiple recipients can be speci-
fied in one statement.�
RETENTION: defines the duration for which the col-
lected information will be kept.�
DATA-GROUP: provides the list of individual data
items (specified using DATA tags) that are collected
for stated purposes in the statement.

P3P has predefined values for PURPOSE (12 choices),
RECIPIENT (6), and RETENTION (5). Examples of
PURPOSE include:�

current: completion and support of activity for which
data was provided,�
individual-decision: inferring habits, interests, and
other characteristics of individuals, and�
contact: contacting visitors for marketing of services
or products through a communication channel other
than voice telephone.

Examples of RECIPIENT include:�
ours: ourselves,�
same: legal entities following our practices, and�
unrelated: legal entities whose practices are unknown
to us.

Examples of RETENTION include:�
stated-purpose: discarded at the earliest time possible,�
business-practice: long term retention but with a de-
struction time table, and�
indefinitely.

P3P also has predefined types of data items. It is also pos-
sible to assign CATEGORIES to data items.

A policy can provide opt-in or opt-out values for the re-
quired attribute of PURPOSE and RECIPIENT elements.

2



<POLICY>
... ...
<STATEMENT>
<PURPOSE><current/></PURPOSE>
<RECIPIENT><ours/><same/></RECIPIENT>
<RETENTION><stated-purpose/></RETENTION>
<DATA-GROUP>
<DATA ref="#user.name"/>
<DATA ref="#user.home-info.postal/>
<DATA ref="#dynamic.miscdata">
<CATEGORIES><purchase/></CATEGORIES>

</DATA>
</DATA-GROUP>

</STATEMENT>

<STATEMENT>
<PURPOSE>
<individual-decision required="opt-in"/>
<contact required="opt-in"/>

</PURPOSE>
<RECIPIENT><ours/></RECIPIENT>
<RETENTION><business-practices/></RETENTION>
<DATA-GROUP>
<DATA ref="#user.home-info.online.email/>
<DATA ref="#dynamic.miscdata">
<CATEGORIES><purchase/></CATEGORIES>

</DATA>
</DATA-GROUP>

</STATEMENT>
</POLICY>

Figure 1: Volga’s Privacy Policy in P3P

The opt-in value says that the user must provide ex-
plicit consent to the stated purpose/recipient. The opt-out
value gives the user flexibility to reject the specified pur-
pose/recipient, but she needs to take additional action for
the opt-out to take effect.

An Example Policy Volga is a bookseller who needs to
obtain certain minimum personal information to complete
a purchase transaction. This information includes name,
shipping address, and the credit card number. Volga also
uses the purchase history of customers to offer personal-
ized book recommendations, for which it needs customer’s
email address.

Figure 1 shows how Volga’s policy may look like in
the P3P policy language. The first STATEMENT says that
the name, postal address, and miscellaneous purchase data
(i.e., book titles, credit card number, etc.) will be used for
completing the current purchase transaction.

The second STATEMENT allows Volga to use miscel-
laneous purchase data for creating personalized recom-
mendations and email them to the customer. However,
the opt-in value of the required attribute of the purposes
“individual-decision” and “contact” implies that the ex-
plicit customer consent is necessary. By default, the value
of the required attribute is set to always, which precludes
the possibility of customer opt-in or opt-out.

2.2. Privacy Preferences

Privacy preferences are expressed in APPEL as a list of
RULEs [8]. Rules are evaluated in the order in which they
are specified. A rule consists of two parts:

<appel:RULESET>
<appel:RULE behavior="block">

<POLICY>
<STATEMENT>
<PURPOSE appel:connective="or">

<admin/><develop/><tailoring/>
<pseudo-analysis/><pseudo-decision/>
<individual-analysis/>
<individual-decision required="always"/>
<contact required="always"/>
<historical/><telemarketing/>
<other-purpose/><extension/>

</PURPOSE>
</STATEMENT>

</POLICY>
</appel:RULE>

<appel:RULE behavior="block">
<POLICY>

<STATEMENT>
<RECIPIENT appel:connective="or">
<delivery/><other-recipient/>
<unrelated/><public/><extension/>

</RECIPIENT>
</STATEMENT>

</POLICY>
</appel:RULE>

<appel:RULE behavior="request"/>
<appel:OTHERWISE/>

</appel:RULE>
</appel:RULESET>

Figure 2: Jane’s Privacy Preferences in APPEL

� Rule behavior: Specifies the action to be taken if the
rule fires. The behavior can be request, implying that
the policy conforms to preferences specified in the
rule body. It can be block, implying that the policy
does not respect user’s preferences. See [8] for other
behaviors.� Rule body: Provides the pattern that is matched
against a policy. The format of a pattern follows the
format used in specifying privacy policies described
earlier.

An interesting aspect of APPEL is the connective at-
tribute, which defines the logical operators of the language.
A connective can be: or, and, non-or (negated or), non-
and (negated and), or-exact, and and-exact. Every element
(expression) in an APPEL rule has a connective associated
with it, the default connective being and. The two unusual
connectives are and-exact and or-exact, whose semantics
are as follows:� and-exact: A successful match is made if (a) all of

the contained expressions can be found in the policy
and (b) the policy contains only elements listed in the
rule. For and, only part (a) needs to be satisfied, not
part (b).� or-exact: A successful match is made if (a) one or
more of the contained expressions can be found in the
policy, and (b) the policy only contains elements listed
in the rule. For or, only part (a) needs to be satisfied,
not part (b).

3



An Example APPEL Preference Jane is a privacy-
conscious consumer who wants retailers to use her personal
information only to complete her purchase transactions. At
the same time, Jane likes individualized recommendations
emailed to her and does not mind her purchase history to
be used for this purpose. However, she wants the possibil-
ity of opting-in or out of this service and does not want to
release her information to a retailer who does not offer this
choice.

Figure 2 shows Jane’s preferences, comprising of two
rules. The first rule blocks all purposes other than cur-
rent, but leaves the possibility of opting-in or out of the
individual-decision and contact purposes. The second rule
ensures that the only possible recipients of Jane’s data are
the retailer or its agents following the same privacy prac-
tices. The final rule allows data to be released if the first
two rules do not fire.

Observe that Volga’s policy conforms to Jane’s prefer-
ences. The first rule in Jane’s preferences does not fire be-
cause the set of purposes in Volga’s policy does not inter-
sect with the corresponding set in Jane’s rule, except for
contact and individual-decision. For these two elements,
the “required” attribute does not match (opt-in versus al-
ways), and hence the elements do not match either. Note
that if individual-decision was not specified as opt-in in
Volga’s policy, the default value of always would have been
presumed for the required attribute. Then, the first rule in
Jane’s preferences would have fired, stopping Jane from
providing her data to the site. Similarly, the second rule
in Jane’s preferences does not fire because none of the re-
cipients in Jane’s rule are present in Volga’s policy.

2.3. The Reference File

A site may offer many services, each implemented with
a specific set of web pages. This site can have multiple
privacy policies corresponding to the practices associated
with the various services. A site’s reference file assigns
individual policies with subsets of the URIs at a site.

For each policy referenced, the reference file has a set
of INCLUDE/EXCLUDE declarations that together define
the URIs covered by the policy. Once a specific policy for
a requested URI has been located using the reference file,
the APPEL preferences can be matched against the selected
P3P policy to determine if the request for the URI content
should proceed.

3. Current P3P Implementations
We first describe the client-centric architecture for imple-
menting P3P outlined in [29], along with some actual im-
plementations. Next, we describe some tools.

3.1. Client-Centric Architecture

A hypothetical architecture for implementing P3P has been
described in [29]. There are two parts to deploying P3P.
Web sites first create and install policy files at their sites
(see Figure 3), possibly using some tools discussed below.

Figure 3: Creation and Installation of Policies (Client-
Centric)

Figure 4: Policy-Preference Matching (Client-Centric)

Then as the users browse a web site, their preferences are
checked against a site’s policy before they access the site
(see Figure 4).

3.2. Implementations

There are two prominent implementations of the above ar-
chitecture: Microsoft IE6 and AT&T Privacy Bird.

IE6 implementation of Compact P3P Policies Internet
Explorer 6 allows a user to specify her privacy preference
for handling cookies. When the user requests a page from
a web site, IE6 allows the website to place a cookie only if
the site provides a compact version of the applicable P3P
privacy policy, and that policy is compatible with the user’s
preference. (See [9] for details about the compact policies.)
The user can manually override this decision by specifying
websites whose cookies should always be allowed (or dis-
allowed).

Privacy Bird AT&T Privacy Bird is available from priva-
cybird.com as a browser extension to IE5 and up. It accepts
user-defined APPEL privacy preferences, and also includes
an APPEL engine to compare a user’s APPEL preference
with a web site’s P3P policy as the user is browsing the
web.

3.3. Tools

Some tools have become available to aid with P3P imple-
mentation and deployment. A complete inventory can be
found at [19]; we briefly survey some of them.

Creating Policies. P3PEdit, available from p3pedit.com,
is a web-based privacy policy generator. Users create their
policies by answering short privacy-related questions in

4



Figure 5: Creation and Installation of Policies (Server-
Centric)

Figure 6: Policy-Preference Matching (Server-Centric)

plain English. IBM Tivoli Privacy Wizard [16] lets a com-
pany define privacy policies using a web-based GUI tool.
The policies so created can be exported in the P3P format.

Creating APPEL Preferences. JRC APPEL Preference
Editor [17] is a Java-based editor for preparing APPEL
preferences. Each APPEL RULE can be added either by
choosing from a set of predefined RULEs, or by using an
advanced mode that gives options for creating a rule.

Checking APPEL Preferences. JRC P3P Proxy [17] is
a centralized proxy service that conducts P3P privacy pol-
icy checking on behalf of subscribed users. A user can
specify her APPEL preference for her account. After a
user changes the proxy settings of her browser, her further
browsing requests are redirected to the proxy service. The
proxy handles the matching of P3P and APPEL and takes
appropriate actions on behalf of the user.

4. Server-Centric Architecture for P3P
We propose a server-centric architecture for deploying P3P
as an alternative to the prevailing client-centric architec-
ture. In this architecture, a website deploying P3P first in-
stalls its privacy policies in a database system as shown in
Figure 5. Then database querying is used for matching a
user’s preferences against privacy policies as shown in Fig-
ure 6.2

2We are assuming that the client preferences will continue to be ex-
pressed in APPEL and they will be translated into database queries before
the matching takes place. This translation step may become unnecessary
should the proposed architecture catch on. For in that case, database
queries may replace APPEL for representing privacy preferences and
the GUI tools for generating preferences may directly generate database
queries.

We envision three variations of this architecture:
1. Convert privacy policies into relational tables [3] [7]

[11] [14] [20] [21] [23], and convert an APPEL pref-
erence into an SQL query for matching.

2. Store privacy policies in relational tables, define an
XML view over them [3] [6] [7] [21] [22], and use
an XQuery [4] derived from an APPEL preference for
matching.

3. Store privacy policies in a native XML store and use
an XQuery derived from an APPEL preference for
matching.

Given that P3P policies are expressed in XML, storing
them in a native XML store in the third variation is straight-
forward. This variation also requires converting an APPEL
preference into an XQuery for matching, the techniques for
which are also those of the second variation.

4.1. Other Alternatives

There are two orthogonal dimensions in the space of
choices for implementing P3P:

1. What engine should be used for matching a preference
against a policy? Should it be a specialized engine
(e.g. a native APPEL engine) or should it be a general
purpose engine (e.g. a database engine)?

2. Where should the matching take place? Should it hap-
pen at the client or the server?

Client Server
Specialized engine Current ?
Database engine ? Proposed

Figure 7: Architectural Choices

Figure 7 shows the decision matrix. The current P3P
deployments are using specialized APPEL engines to do
preference matching at the clients. It is possible to con-
tinue to use a specialized engine, but move the matching
to the server. However, this choice is less attractive as we
lose the benefits of using the database engine for matching.
Similarly, it is possible to do the checking at the client, but
use database querying. This alternative has the advantage
of avoiding the need for a specialized engine. However, it
will require moving the database tables from the server to
a light-weight main memory database system in the client,
which is also not very attractive. We have, therefore, fo-
cussed on the alternative of using database querying at the
server.

4.2. Advantages and Disadvantages

The following are some of the advantages of the server-
centric architecture of P3P over the client-centric architec-
ture:�

The preference checking at the client leads to heavier
clients, which is a problem for thin, mobile devices
that are likely to dominate Internet access in the fu-
ture. Our proposal allows for lean clients.

5



� An upgrade in P3P specification may require an up-
grade in every client, which can be a couple of or-
ders of magnitude greater effort than upgrading all the
servers.� As new privacy-sensitive applications emerge, they
will each require building preference checking into
them, rather than reusing checking done at the server.� Site owners can refine their policies if they know what
policies have a conflict with the privacy preferences
of their users. The current architecture does not allow
the site owners to obtain this information.

Using databases for preference matching (in the server-
centric architecture) yields the following additional advan-
tages:� We are creating the infrastructure necessary for en-

hancing P3P with enforcement in the future. The pri-
vacy data tables built for checking preferences against
policies may serve as meta data for ensuring that poli-
cies are followed.� Specialized preference checking engines are reinvent-
ing querying. We, on the other hand, can reuse the
proven database technology for checking preferences
against policies.� Policies of a website will not stay static forever.
Versions of policies can be better managed using a
database system than the current file system based im-
plementations.

The server-centric architecture has some disadvantages
too, including:� There needs to be a greater amount of trust in the

server. For example, the server can see the user’s pref-
erences. Similarly, the user has to trust the database
software being used by the server, whereas the user
can (in principle) choose the checking software used
in the browser.� By caching a reference file, the client may avoid some
checks, assuming a user visits many pages that are
governed by the same policy. On the other hand, it is
possible to design a hybrid architecture in which the
reference file processing is done at the client while the
preference checking is done at the server.

5. System Description
We now describe the important components of our imple-
mentation of the server-centric architecture described in the
previous section. We discuss the schema of the tables used
for storing the policies and how those tables are populated.
We also describe how we translate APPEL into SQL and
XQuery.

5.1. Database Schema for P3P

The SQL query corresponding to an APPEL preference
will depend on the SQL tables used for storing the P3P
policies. For pedagogical reasons, we first give a simplified

// � .name() returns the name of the element �
for each element � defined in the P3P policy do

create a table such that
(a) the name of the table is � .name()
(b) the columns of the table consist of

(i) an id column whose name is e.name()
concatenated with “ id”

(ii) foreign key comprising of the primary key
of the table corresponding to the parent element

(iii) one column for each attribute of �
(c) the primary key of the table comprises of

concatenation of columns in (i) and (ii)

Figure 8: Schema Decomposition Algorithm

Figure 9: The Data Table

relational schema and explain translation of APPEL prefer-
ences into SQL in terms of this schema. Later, we give the
optimized relational schema used in our implementation.

Figure 8 shows the algorithm for decomposing the P3P
schema into tables. Figure 9 shows, as an example, the
table created for the DATA element using this algorithm.
The Data table will contain one row for every DATA el-
ement appearing in a policy. The data id field will con-
tain an identifier for this row. The foreign-key will consist
of the primary key of the table corresponding to the par-
ent element, DATA-GROUP. Finally, the primary key for
the DATA table will consist of the concatenation of data id
with the foreign key.

5.2. Storing Policies in the Database

Having defined the relational schema for storing P3P infor-
mation, the next step is to populate the tables with the data.
Figure 10 gives the algorithm.

5.3. Translating APPEL Preferences into SQL Queries

Recall that an APPEL preference may contain multiple
rules, and that these rules are matched against a policy in
the order in which they appear. We translate each rule into

add(Element � , ForeignKey � ) �
create a unique id;
create a record consisting of

(a) id,
(b) foreign key � , and
(c) all attributes of element � ;

insert the record into the table � .name();
for each subelement se of � do

add(se, id concatenated with � );	
Initial call: add(POLICY, 
 );

Figure 10: Data Population Algorithm

6



1 String main (Rule � ) �
2 String sql = “SELECT” + � .behavior() +
3 “FROM” + applicablePolicy() +
4 “WHERE”;

// recursively match subexpressions of �
5 let 
 = � .connective(); // 
 is either “OR” or “AND”
6 for each subexpression se of � do
7 sql += “EXISTS (” + match(se) + “)” + 
 ;
8 return sql;
9 �
10 String match (Expression � ) �
11 String sql;
12 sql += “SELECT *” +
13 “FROM” + � .name() +
14 “WHERE”;

// generate path connecting � with parent element
15 sql += � .foreignKey() + “=” + � .parent().primaryKey();

// match attributes of �
16 for each attribute attr of � do
17 sql += “AND” + attr.name() + “=” + attr.value();

// recursively match subexpressions of �
18 String sqlSub;
19 let 
 = � .connective(); // 
 is either “OR” or “AND”
20 for each subexpression se of � do
21 sqlSub += “EXISTS (” + match(se) + “)” + 
 ;

22 return sql + “AND (” + sqlSub + “)”;
23 �

Figure 11: Algorithm for Translating an APPEL Preference
into an SQL Query

a SQL query using the algorithm in Figure 11, and submit
the queries to the database in order. To simplify exposi-
tion, the algorithm pseudocode assumes that the APPEL
rule uses only “or” and “and” connectives. Translations
of other connectives are given in Appendix A. The pseu-
docode also omits checks for not generating superfluous
parenthesis as well as unneeded trailing “OR” or “AND”
operators in the query.

The main() function in the SQL translation mirrors the
structure of the APPEL rule. The SELECT clause (line 2)
specifies the behavior, i.e., the action to be taken if the rule
is satisfied. The FROM clause (line 3) provides the pol-
icy id, and the WHERE clause (line 4–7) provides the code
for matching the expressions in the rule against the ele-
ments in the P3P policy. The policy id on line 3 is obtained
by calling the applicablePolicy() function. This function
(details omitted) generates a subquery that queries tables
storing the data from the P3P reference file, and returns the
id of the applicable policy against which the rule must be
evaluated.

An APPEL expression is satisfied by matching its at-
tributes and the constituent subexpressions which are con-
nected through the APPEL logical operators. The match()
function generates the SQL code for matching an APPEL
expression as follows:

1 <appel:RULE behavior="block">
2 <POLICY>
3 <STATEMENT>
4 <PURPOSE appel:connective="or">
5 <admin/>
6 <contact required="always"/>
7 </PURPOSE>
8 </STATEMENT>
9 </POLICY>
10 </appel:RULE>

Figure 12: Simplified First Rule from Jane’s APPEL Pref-
erence

// main(<appel:RULE>)
1 SELECT ‘block’ // rule’s behavior
2 FROM ApplicablePolicy

// ApplicablePolicy represents
// subquery that returns record
// with ID of applicable policy.

3 WHERE
4 EXISTS (

// match(<POLICY>)
5 SELECT *
6 FROM Policy
7 WHERE Policy.policy id=ApplicablePolicy.policy id AND
8 EXISTS (

// match(<STATEMENT>)
9 SELECT *
10 FROM Statement
11 WHERE Statement.policy id = Policy.policy id AND
12 EXISTS (

// match(<PURPOSE>)
13 SELECT *
14 FROM Purpose
15 WHERE
16 Purpose.policy id = Statement.policy id AND
17 Purpose.statement id = Statement.statement id AND
18 (EXISTS (

// match(<admin>)
19 SELECT *
20 FROM Admin
21 WHERE
22 Admin.policy id = Purpose.policy id AND
23 Admin.statement id = Purpose.statement id AND
24 Admin.purpose id = Purpose.purpose id )

// back to match(<PURPOSE>)
25 OR // line 21 of match()
26 EXISTS (

// match(<contact required=...>)
27 SELECT *
28 FROM Contact
29 WHERE
30 Contact.policy id = Purpose.policy id AND
31 Contact.statement id = Purpose.statement id AND
32 Contact.purpose id = Purpose.purpose id AND

// lines 16-17 of match()
33 Contact.required = ‘always’ )
34 ) // back to match(<PURPOSE>)
35 ) // back to match(<STATEMENT>)
36 ) // back to match(<POLICY>)
37 ) // back to match(<appel:RULE>)

Figure 13: SQL Translation of APPEL in Figure 12

7



1. Select elements in the P3P policy from the table cor-
responding to this APPEL expression (lines 12–13).

2. Ensure that the elements belong to their parent ele-
ments by joining this table to the parent table, with
the join condition that the table’s foreign key is the
same as the parent table’s primary key (lines 15).

3. Match any attributes specified in the APPEL expres-
sion (lines 16–17).

4. Recursively match any subexpressions (lines 20–21),
with the appropriate connective.

5.3.1 Translation Example

Figure 13 shows the SQL translation of a simplified version
of the first rule in Jane’s preference (Figure 12). The func-
tion calls that generated the code are shown as grayed-out
comments.

The main() function generates the outer-most SELECT
clause (Figure 13, lines 1–3), which returns the behavior
of Jane’s rule when an applicable policy matches it. The
behavior (‘block’ in this case) is obtained from the behav-
ior attribute of the rule. The applicable policy is found by
a subquery (generated by applicablePolicy()) that accesses
tables storing the data from the reference file. For simplic-
ity, the example translation assumes that the result of this
subquery has been stored in the one-row temporary table
“ApplicablePolicy” containing the id of the applicable pol-
icy.

The rest of the SQL query is generated by recursively
calling the match() function for every subexpression in the
rule. The match() function is first called to generate SQL
for the outer most POLICY expression, as shown in lines
5–8. The SQL selects POLICY elements from the Policy
table and uses a join to ensure these elements have the ap-
plicable id. The match() function is then recursively called
to generate SQL for the STATEMENT expression. The
generated SQL (lines 9–12) selects STATEMENT elements
from the Statement table and uses a join to ensure these
elements belong to their parent POLICY elements. The
match() function is next called for the PURPOSE expres-
sion, which has an “or” connective. The generated SQL
is shown in lines 13–18 and 25–26. Notice that the “or”
connective appears as a SQL “OR” operator (line 25). Fi-
nally, the match() function is called to generate SQL for the
“admin” (lines 19–24) and “contact” (lines 27–33) expres-
sions. Note that the SQL code for “contact” also specifies
(line 33) that the “required” attribute has to have the value
“always” for this disjunct to be true.

5.4. Optimizations

The algorithm in Figure 8 generates a schema that has a
uniform structure which makes the translation algorithm
easy to understand. We take the schema generated by this
algorithm and reduce the number of tables in order to re-
duce the number of joins in the generated SQL queries.
These optimizations draw upon the rich body of research

Figure 14: Optimized tables for storing policies. Arrows
represent foreign key relationships.

on generating a relational schema from an XML schema
[7] [11] [14] [20] [21] [23].3

Figure 14 shows the schema used in our implementation
that incorporates the following optimizations:

� We do not create separate tables for P3P subelements
that define the values for PURPOSE, RECIPIENT,
and CATEGORIES. Instead, we store them in the ta-
ble for their corresponding parent element. We also
add additional columns in the parent table for storing
their attributes. For example, the “Purpose” table has
a “purpose” column that is used to store the values
of purposes appearing as subelements of PURPOSE,
and a “required” column for storing the value of the
subelements’ “required” attribute.

Moreover, the tables for PURPOSE and RECIPIENT
do not need an id column because there can be only
one such element in a STATEMENT. Thus, for these
two tables, the statement id concatenated with pol-
icy id suffices as a primary key.

� We do not create separate tables for subelements
defining the values of RETENTION (e.g. “stated-
purpose”). We store them with the grand-parent ele-
ment STATEMENT, since in P3P, each STATEMENT
can have only one RETENTION element, and the lat-
ter can have only one subelement.

� Instead of a separate table for CONSEQUENCE, we
store its value in a nullable “consequence” column in
the Statement table because a STATEMENT can con-
tain at most one CONSEQUENCE.

3Rather than hand-crafting our relational schema, we would have liked
to use a schema generation tool. Unfortunately, despite our best efforts,
(including contacting authors), we could not get access to the externally
developed tools. And our locally developed prototype [6] [21] [22] could
not handle the full richness of the P3P schema.

8



SELECT ‘block’
FROM ApplicablePolicy
WHERE
EXISTS (

SELECT *
FROM Policy
WHERE Policy.policy id=ApplicablePolicy.policy id AND
EXISTS (

SELECT *
FROM Statement
WHERE Statement.policy id = Policy.policy id AND
EXISTS (

SELECT *
FROM Purpose
WHERE
Purpose.policy id = Statement.policy id AND
Purpose.statement id = Statement.statement id AND
( Purpose.purpose = ‘admin’

OR
Purpose.purpose = ‘contact’ AND
Purpose.required = ‘always’

) ) ) )

Figure 15: SQL Translation of Jane’s Preference for the
Optimized Schema

Figure 16: Tables for storing reference files. Arrows repre-
sent foreign key relationships.

The translation algorithm is modified to work against
this schema. Figure 15 shows the translation of Jane’s sim-
plified first rule given in Figure 12. The translation algo-
rithm also has special functions for some subexpressions
(such as PURPOSE and RECIPIENT) in order to merge
several subqueries into a single subquery. Thus the two
subqueries in Figure 13 (lines 19–24 and lines 27–33) are
merged into a single subquery in Figure 15.

5.5 Tables for Storing the Reference File Information

Figure 16 shows the schema of the tables used for storing
information in the reference file. The META element is the
top level element in a reference file. The Policyref table
corresponds to the POLICY-REF subelement of a META
element. Each row references in the about column a sin-
gle policy among many possible privacy policies that a site
may have. The policy id column gives the unique id of the
corresponding policy. There can be multiple POLICY-REF
elements within a META element, mapping distinct por-
tions of the site to specific privacy policies. The portion of
a site covered by a policy is derived from INCLUDE and

1 String main (Rule � ) �
2 String xq =
3 “if (document(” + applicablePolicy()+ “)[”;
4 let � = � .connective(); // � is either “OR” or “AND”
5 for each subexpression se of � do
6 xq += match(se) + � ;
7 xq += “]) then � ” + � .behavior() + “ � ”;
8 return xq;
9 �
10 String match (Expression � ) �

// match attributes of �
11 String xqAttr;
12 for each attribute attr of � do
13 xqAttr += “@” + attr.name() + “=” + attr.value();
14 xqAttr += “AND”;

// recursively match subexpressions of �
15 String xqSub;
16 let � = � .connective(); // � is either “or” or “and”
17 for each subexpression se of � do
18 xqSub += match(se) + � ;

19 return � .name() + “[“ + xqAttr + “(” + xqSub + “)]”;
20 �
Figure 17: Algorithm for Translating an APPEL Preference
into an XQuery

EXCLUDE subelements. A POLICY-REF element can
also have COOKIE-INCLUDE and COOKIE-EXCLUDE
subelements which are used to isolate policies correspond-
ing to cookies.

5.6. Translating APPEL Preferences into XQuery

We assume that a policy is either stored as an XML doc-
ument in a native XML store, or there is a reconstruction
view [6] [21] [22] that renders a P3P policy according to its
original XML schema starting from a tabular representation
of the policy. In either case, the XQuery that implements an
APPEL rule will be the same. When using the reconstruc-
tion view, it is the query system’s responsibility to accept
the XQuery expressed over the XML view of the policy
and transform it into an equivalent SQL query against the
tabular representation chosen to store policies.

Aside from the fact that navigation in SQL is expressed
with joins while navigation in XQuery is expressed using
XPath [4], the translation of APPEL into XQuery generally
resembles the translation of APPEL into SQL. A simplified
version of the translation algorithm that only handles “or”
and “and” connectives is shown in Figure 17. The full al-
gorithm is given in Appendix B.

The main() function generates an XQuery if statement
that returns the rule behavior if the condition expressed by
the rule is met by the applicable policy.

The body of the rule is translated by the match() func-
tion. Lines 11 through 14 generate the XQuery code for
matching attributes. Line 17 iterates through the subex-
pressions of APPEL expression � and uses a recursive call

9



if (document("applicable-policy")
POLICY
[STATEMENT
[PURPOSE
[admin OR
contact [@required = "always"]
]]])

then
return <block/>

Figure 18: XQuery Translation of Jane’s Simplified AP-
PEL Preference

to the match() function to create predicates for the subex-
pressions. The logical connective among these predicates
is set by � which can either be an “and” or “or” , depend-
ing upon the connective associated with � (line 18). XPath
predicates are expressed using brackets. They restrict the
matching elements in the policy. This is shown on line 19,
where � .name() creates the name of the expression , fol-
lowed by a predicate applied to attributes and subexpres-
sions of � .

5.6.1 Translation Example

Figure 18 shows the translation of the simplified first rule
of Jane’s APPEL preference (Figure 12). The XQuery con-
tains an if statement that returns � block � if the condition
of the statement is met. The condition is expressed as an
XPath which starts by selecting the applicable policy. The
outer most restriction specifies that the POLICY element
has to have at least one STATEMENT subelement. The
next restriction is expressed on STATEMENT and selects
statements that have at least one PURPOSE subelement.
The restriction on PURPOSE is a disjunction of the predi-
cates on two subelements “admin” and “contact”. For the
subelement “contact”, its required attribute must also be set
to the value “always” in order for this disjunct to be true. If
the result of the XPath is not empty, the if condition is true,
thereby implementing the simplified rule of Jane’s prefer-
ence.

6. Performance Experiments

We now present the results of our experiments to study the
performance of our database implementation of P3P.

6.1. Experimental Setup

Our experiments measured the time to match a P3P policy
with an APPEL preference, first using a native APPEL en-
gine and then using a database engine. Both the APPEL
engine and the database engine were run on a Windows NT
4.0 server with dual 600 MHz processors and 512 MB of
memory.

The APPEL engine we used is available from the Joint
Research Center (JRC) [17]. To the best of our knowledge,
it is the only APPEL engine currently available in public
domain. The database system we used was DB2 UDB 7.2.
The policy database was created under DB2’s default set-
tings, with the application heap size set to 4 MB.

Preference #Rules Size (KB)
Very High 10 3.1
High 7 2.8
Medium 4 2.1
Low 2 0.9
Very Low 1 0.3
Average 4.8 1.9

Figure 19: JRC APPEL Preferences

To measure the performance of the alternative of trans-
lating APPEL preferences into XQuery and executing them
against the XML policy view over privacy data tables, we
used the XTABLE4 prototype [6] [21] [22]. XTABLE was
responsible for generating SQL from XQuery, which was
then run against DB2.

We could not find any public-domain native XML store
in which we could define and populate our data tables to run
experiments. Although some public domain demonstra-
tions of XQuery implementation are available (see [30]),
they only run against canned databases.

6.2. Data Set

We used 29 P3P policies in our experiments. They were
obtained by crawling the web sites of the Fortune 1000
companies looking for P3P policies. We found 29 compa-
nies with P3P policies, including companies such as AT&T,
IBM, McGraw Hill, and Progressive Insurance Group.
Sizes of these policies vary from 1.6 to 11.9 KBytes, with
the average size being 4.4 KBytes. These policies con-
tained a total of 54 statements (about 2 statements per pol-
icy on average).

We used 5 APPEL preferences in our experiments.
These preferences were taken from the JRC site [17] and
constitute their test suite. JRC designed these preferences
for different levels of sensitivity for privacy: Very High,
High, Medium, Low, and Very Low. Figure 19 lists the
sizes of preferences and the number of rules they contained.

6.3. Performance Results

6.3.1 Shredding

We measured the time needed for shredding each of the
30 privacy policies and storing the shredded policies into
privacy tables in DB2 as per the schema defined in Sec-
tion 5.4. The average shredding time was 3.19 seconds,
with the maximum and minimum being 11.94 and 1.17 sec-
onds respectively. Since a policy changes infrequently, the
lifetime cost of shredding can be considered negligible.

6.3.2 Matching

Figure 20 shows the performance of matching preferences
against policies for the three implementations: native AP-
PEL, SQL, and XQuery. Each preference was matched
against every policy. The figure shows the average, max-
imum, and minimum in seconds for matching a preference

4The XTABLE prototype has also been referred to as the XPERANTO
prototype in the past.

10



APPEL SQL
Engine Convert Query Total

XQuery

Average 2.63 0.08 0.08 0.16 1.65
Max 9.08 0.14 0.24 0.34 5.00
Min 0.98 0.04 � 0.001 0.04 0.30

Figure 20: Execution time for matching a preference
against a policy (seconds)

APPEL SQLPreference
Engine Convert Query Total

XQuery

Very High 2.65 0.09 0.08 0.17 2.63
High 2.68 0.10 0.14 0.24 2.33
Medium 2.66 0.13 0.14 0.27 -
Low 2.60 0.06 0.03 0.09 1.51
Very Low 2.54 0.04 � 0.01 0.05 0.31

Figure 21: Per-preference-type execution times for match-
ing a preference against a policy (seconds)

against a policy. For the SQL implementation, we separate
the time needed for converting APPEL into SQL (conver-
sion time) and the time needed for matching (query time).
The total time is the sum of conversion and query times.
The XQuery numbers include both the time for converting
APPEL into XQuery, and the time taken by XTABLE to
convert XQuery into SQL.

Figure 21 shows the performance numbers broken down
per five preference types. For the XQuery implementation,
we do not have numbers for the Medium preference. The
XTABLE translation of the XQuery into SQL was too com-
plex for DB2 to execute in this case.

The numbers shown in Figure 20 and 21 are the “warm”
numbers. They reflect the time likely to be experienced
in deployed systems. The system was warmed up by first
matching an extra (artificial) preference and discarding this
time. This factors out one-time costs such as the JVM load-
ing the classes. The difference between the warm and cold
average matching times was about 1.4 seconds for the na-
tive APPEL engine, 1 second for SQL, and 3 seconds for
the XQuery implementation. For the SQL implementation,
we stopped and restarted DB2 after matching each prefer-
ence to avoid any advantage due to DB2 query caching.

Several conclusions can be drawn from these figures.
First is the surprisingly good performance of the SQL im-
plementation when compared to the native APPEL engine.
We would have been satisfied if the SQL implementation
came close to the APPEL implementation. But the SQL
implementation turns out to be more than 15 times faster,
even with the conversion time included in the SQL num-
bers. If we just compare the matching time, the SQL im-
plementation is 30 times faster. The latter is a meaning-
ful comparison as it is not unreasonable to think of a P3P
deployment in which the preference generation GUI tool
produces preferences as a set of SQL statements.

To understand this large performance difference, we
profiled the APPEL engine. Before matching a prefer-
ence against a policy, the APPEL engine first augments
every data element in the policy with the corresponding

categories predefined in the P3P base schema (see Section
5.4.6 in [8]). We found that this augmentation accounts for
most of the difference in performance. In a client-centric
architecture, the APPEL engine running in the client has to
incur this cost for every preference checking. Our SQL
implementation, on the other hand, does this expansion
while shredding the policy into relational tables, and incurs
no corresponding cost at the time of preference checking.
Since a policy changes infrequently, the cost of shredding
amortized over a large number of matchings of different
preferences against a policy can be considered negligible.

We were hoping for a better performance from the
XQuery alternative, particularly since the translation algo-
rithm is simpler and the generated XQueries are easier to
comprehend than the SQL queries. This performance gap
points out that there are still untapped optimizations that
XTABLE can perform in generating SQL from XQueries.

More important than the relative comparison is the abso-
lute time needed for matching preferences against policies.
Figures 20 and 21 show that the latency introduced by our
SQL implementation for preference matching is more than
acceptable for it to be used in practical P3P deployments.

7. Conclusion and Future Work
The following are the contributions of this paper:� Identification of P3P as an important application area

for database systems.� Investigation of alternative architectures for imple-
menting P3P.� Proposal for a server-centric architecture based on
database querying technology.� Mapping of a P3P policy schema into a relational
schema for storing policy data.� Algorithms for translating privacy preferences ex-
pressed in APPEL into SQL as well as XQuery.� Performance experiments showing that the proposed
architecture has adequate performance for it to be used
in practical deployments of P3P.

An interesting topic for future work would be to explore
the use of database query languages for directly express-
ing and representing privacy preferences. In particular, it
would be useful to identify the minimal subsets of SQL and
XQuery needed for this purpose. Another direction for fu-
ture research would be to develop and implement database
mechanisms for ensuring that the privacy policies are in-
deed being followed.

Acknowledgments We wish to thank Dan Gruhl for
the crawl of the Fortune 1000 web sites for P3P policies.
Thanks are also due to Lorrie Cranor of AT&T for answer-
ing our questions regarding P3P and Privacy Bird.

References
[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippo-

cratic databases. In 28th Int’l Conference on Very Large
Databases, Hong Kong, China, August 2002.

11



[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Implement-
ing P3P using database technology. In 19th Int’l Conference
on Data Engineering, Bangalore, India, March 2003.

[3] M. Benedikt, M. Fernandez, J. Freire, and A. Sahuguet.
XML and data management. In WWW-2002 Tutorial, Hon-
olulu, Hawaii, May 2002.

[4] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu,
J. Robie, J. Simeon, and M. Stefanescu, editors. XQuery
1.0: An XML Query Language. W3C Working Draft, April
2002.

[5] Business Week. Privacy on the Net, March 2000.

[6] M. J. Carey, D. Florescu, Z. G. Ives, Y. Lu, J. Shanmugasun-
daram, E. J. Shekita, and S. N. Subramanian. XPERANTO:
Publishing object-relational data as XML. In WebDB Work-
shop, Dallas, Texas, May 2000.

[7] S. Chaudhuri and K. Shim. Storage and retrieval of XML
data using relational databases. In VLDB Tutorial, Roma,
Italy, 2001.

[8] L. Cranor, M. Langheinrich, and M. Marchiori. A P3P Pref-
erence Exchange Language1.0 (APPEL1.0). W3C Working
Draft, April 2002.

[9] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-
Marshall, and J. Reagle. The Platform for Privacy Prefer-
ences 1.0 (P3P1.0) Specification. W3C Recommendation,
April 2002.

[10] L. Cranor, J. Reagle, and M. Ackerman. Beyond con-
cern: Understanding net users’ attitudes about online pri-
vacy. Technical Report TR 99.4.3, AT&T Labs–Research,
April 1999.

[11] A. Deutsch, M. F. Fernandez, and D. Suciu. Storing
semistructured data with STORED. In SIGMOD, pages
431–442, Philadephia, Pennsylvania, June 1999.

[12] The Economist. The End of Privacy, May 1999.

[13] European Union. Directive on Privacy Protection, October
1998.

[14] D. Florescu and D. Kossman. Storing and querying XML
data using an RDBMS. IEEE Data Engineering Bulletin,
22(3):27–34, 1999.

[15] E. N. Hanson and J. Widom. An Overview of Production
Rules in Database Systems. The Knowledge Engineering
Review, 8(2):121–143, June 1993.

[16] IBM Tivoli Privacy Wizard. http://www.tivoli.resource cen-
ter/maximize/privacy/wizard code.html.

[17] JRC P3P Resource Centre. http://p3p.jrc.it.

[18] Office of the Information and Privacy Commissioner, On-
tario. Data Mining: Staking a Claim on Your Privacy, Jan-
uary 1998.

[19] References for P3P implementations.
http://www.w3.org/P3P/implementations.

[20] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Ef-
fecient relational storage and retrieval of XML documents.
In WebDB Workshop, Dallas, Texas, May 2000.

[21] J. Shanmugasundaram, J. Kiernan, R. Krishnamurthy, E. Vi-
glas, J. Naughton, and I. Tatarinov. A general technique for
querying XML documents using a relational database sys-
tem. SIGMOD RECORD, 30(3), 2001.

[22] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan, and
J. Funderburk. Querying XML views of relational data. In
VLDB, Roma, Italy, 2001.

[23] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. De-
Witt, and J. F. Naughton. Relational databases for querying
XML documents: Limitations and opportunities. In VLDB,
pages 302–314, Edinburgh, Scotland, 1999.

[24] Time. The Death of Privacy, August 1997.

[25] A. Westin. E-commerce and privacy: What net users want.
Technical report, Louis Harris & Associates, June 1998.

[26] A. Westin. Privacy concerns & consumer choice. Technical
report, Louis Harris & Associates, Dec. 1998.

[27] A. Westin. Freebies and privacy: What net users think.
Technical report, Opinion Research Corporation, July 1999.

[28] The World Wide Web Consortium. Extensible Markup Lan-
guage (XML). http://www.w3.org/XML.

[29] The World Wide Web Consortium. P3P 1.0: A
New Standard in Online Privacy. Available from
http://www.w3.org/P3P/brochure.html.

[30] The World Wide Web Consortium. XML Query.
http://www.w3.org/XML/Query.

12



A. SQL Translations of Other Connectives

The translation algorithm in Figure 11 assumes that the AP-
PEL connective was either “or” or “and”. We now gener-
alize the translation algorithm to handle other connectives:
“non-or”, “non-and”, “or-exact” and “and-exact”. The gen-
eralization mainly consists of an extended connect() func-
tion and a new others() function. The latter is used in the
translation of “or-exact” and “and-exact” to ensure that the
policy does not contain excess evidences. The full algo-
rithm is shown in Figure 24.

A.1. Non-or and Non-and

The “non-or” and “non-and” connectives negate the match-
ing conditions specified by the “or” and “and” connectives.
Line 21 in Figure 24 achieves this by prefixing a NOT to
the SQL generated for “or” and “and”.

A.2. Or-exact and And-exact

The “or-exact” and “and-exact” connectives are more re-
strictive than the “or” and “and” connectives. For an ev-
idence to match an expression, the “or” (“and”) connec-
tive requires that at least one (all) subexpressions of the
expression are matched by some subevidences of the evi-
dence. The “or-exact” (“and-exact”) has the same require-
ment as “or” (“and”), but additionally requires that there
is no subevidence that does not have a matching subex-
pression. For example, the APPEL expression Figure 22
does not match the policy evidence in Figure 23 because
the second DATA subevidence in the policy does not have
any matching APPEL subexpression. Note that these two
would match if the connective were an “or”.

<DATA-GROUP appel:connective = "or-exact">
<DATA ref="#user.name"/>
<DATA ref="#user.gender"/>

</DATA-GROUP>

Figure 22: An APPEL expression with or-exact connective

<DATA-GROUP>
<DATA ref="#user.name"/>
<DATA ref="#user.home-info.postal">

</PURPOSE>

Figure 23: A fragment of a policy

The above requirement is enforced in Figure 24 by pro-
viding an additional condition in the translation. This con-
dition is expressed as a double negation (line 23): there
does not exist any subevidence that does not match any
subexpression. The generated translation consists of a NOT
followed by a code block comprising the second negation
(“exists a subevidence that does not match any subexpres-
sion”). This code block is generated by the others() func-
tion.

Figure 25 shows, as an example, the SQL translation for
the APPEL expression given in Figure 22.

1 String main (Rule r) �
2 return “SELECT” + r.behavior() +
3 “FROM” + applicablePolicy() +
4 “WHERE” + connect(r);
5  
7 String connect(Expression ! ) �
8 String sqlAttr = genAttr( ! );
9 let " = ! .connective();
10 String sqlSub;
11 for each subexpression se of ! do
12 sqlSub += “EXISTS (” +
13 path(se) + “AND” + connect(se) + “)”;
14 // orAnd() returns the “or” or “and” part of "
15 sqlSub += " .orAnd();
16 String sql = sqlAttr “AND (” + sqlSub + “)”;

18 if " is “or” or “and” then
19 return sql;
20 else if " is “non-or” or “non-and” then
21 return “NOT (” + sql + “)”;
22 else // " is “or-exact” or “and-exact”
23 String sqlNoOther = “NOT (” + others( ! ) + “)”;
24 return sql + “AND” + sqlNoOther;
25  
26 String genAttr (Expression ! ) �
27 String sql;
28 for each attribute attr of ! do
29 sql += attr.name() + “=” + attr.value() + “AND”;
31 return sql;
32  
33 // Expressions in # have the same name
34 String genExistsBody (Expression[ ] # ) �
35 let $ = the first expression in # ;
36 String sql = path( $ ) + “AND NOT (”;
37 for each expression ! in # do
38 sql += connect( ! ) + “OR”;
39 return sql + “)”;
40  
42 String path (Expression ! ) �
43 return sql = “SELECT *” +
44 “FROM” + ! .name() +
45 “WHERE” + ! .foreignKey() + “=”
46 + ! .parent().primaryKey();
48  
49 String others (Expression ! ) �
50 String sql;
51 Expression[ ] % = all listed subexpressions of ! ;
52 partition % by subexpression names;
53 for each partition # do
54 sql += “EXISTS (” + genExistsBody( # ) + “) OR”;
55 Expression[ ] & = all unlisted subexpressions of ! ;
56 for each subexpression se in & do
57 sql += “EXISTS (” + path(se) + “) OR”;
58 return sql;
59  
Figure 24: Full Algorithm for Translating an APPEL pref-
erence into an SQL Query

13



SELECT *
FROM Datagroup
WHERE Datagroup.policy id = Statement.policy id AND

Datagroup.statement id = Statement.statement id AND
( EXISTS (

SELECT *
FROM Data
WHERE Data.policy id = Datagroup.policy id AND

Data.statement id = Datagroup.statement id AND
Data.datagroup id = Datagroup.datagroup id AND
Data.ref = ‘#user.name’ )

OR
EXISTS (

SELECT *
FROM Data
WHERE Data.policy id = Datagroup.policy id AND

Data.statement id = Datagroup.statement id AND
Data.datagroup id = Datagroup.datagroup id AND
Data.ref = ‘#user.gender’ )

)
AND
NOT (
EXISTS (

SELECT *
FROM Data
WHERE Data.policy id = Datagroup.policy id AND

Data.statement id = Datagroup.statement id AND
Data.datagroup id = Datagroup.datagroup id AND
NOT ( Data.ref = ‘#user.name’

OR
Data.ref = ‘#user.gender’ ) )

)

Figure 25: SQL Translation of “Or-exact”

B. XQuery Translations of Other Connectives
Figure 26 shows the full algorithm for translating an AP-
PEL rule into an XQeury. This algortithm handles all the
connectives. Figure 27 shows the fragment of the XQuery
generated for the APPEL expression given in Figure 22.
The relative simplicity of the XQuery translation stems
from the availability of for all in XQuery, whereas SQL
requires the use of NOT EXISTS NOT to simulate for all.

1 String main (RuleBody ' ) (
2 String xq =
3 “if (document(” + applicablePolicy()+ “)[” +
4 matchSubexpressions( ' ) +
5 “]) then ) ” + ' .behavior() + “ * ”;
6 return xq;
7 +
8 String match (Expression , ) (

// match attributes of ,
9 String xpAttr;
10 for each attribute attr of , do
11 xpAttr += “@” + attr.name() + “=" ” + attr.value() + “"”;
12 xpAttr += “AND”;

// match subexpressions of ,
13 String xpSub = matchSubexpressions( , );

14 return , .name() + “[” + xpAttr + “AND (” + xpSub + “)]”;
15 +
16 String matchSubexpressions (Expression , ) (
17 String xpSub;
18 let - = , .connective();

// - .orAnd() returns the “or” or “and” part of -
19 for each subexpression . of , do
20 xpSub += match( . ) + - .orAnd();

21 if - is “non-or” or “non-and” then
22 xpSub = “NOT (” + xpSub + “)”;
23 else if - is “or-exact” or “and-exact” then
24 xpSub = “(” + xpSub + “) AND” + noOther( , );

25 return xpSub;
26 +
27 String noOther (Expression , ) (
28 String xp = “every $s in ./* satisfies (”;
29 for each subexpression . of , do
30 xp += “$s/self::” + match( . ) + “OR”;
31 return xp + “)”;
32 +
Figure 26: Full Algorithm for Translating an APPEL pref-
erence into an XQuery

DATA-GROUP
[( DATA[@ref = "#user.name"]

OR
DATA[@ref = "#user.gender"]

)
AND
all $s in ./* satisfies (
$s[name() eq "DATA"][@ref = "#user.name"]
OR
$s[name() eq "DATA"][@ref = "#user.gender"] )

]

Figure 27: XQuery Translation of “Or-exact”

14


