
E�cient Similarity Search In Sequence Databases

Rakesh Agrawal and Christos Faloutsos�and Arun Swami

IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120

fragrawal,arun@almaden.ibm.comg

March 4, 1994

Abstract

We propose an indexing method for time sequences for processing similarity queries. We
use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain,
the crucial observation being that, for most sequences of practical interest, only the �rst few
frequencies are strong. Another important observation is Parseval's theorem, which speci�es
that the Fourier transform preserves the Euclidean distance in the time or frequency domain.
Having thus mapped sequences to a lower-dimensionality space by using only the �rst few
Fourier coe�cients, we use R�-trees to index the sequences and e�ciently answer similarity
queries. We provide experimental results which show that our method is superior to search
based on sequential scanning. Our experiments show that a few coe�cients (1-3) are adequate
to provide good performance. The performance gain of our method increases with the number
and length of sequences.

1 Introduction

Sequences constitute a large portion of data stored in computers. There have been several e�orts
to model time-sequenced data, to design languages to query such data, and to develop access
structures to e�ciently process such queries (see [28] for a bibliography). Most of the work,
however, has focussed on \exact" queries. New emerging applications, particularly database mining
applications [1], require that databases be enhanced with the capability to process \similarity"
queries. The following are some examples of the similarity queries over sequence databases:

� Identify companies with similar pattern of growth.

� Determine products with similar selling patterns.

� Discover stocks with similar movement in stock prices.

� Find if a musical score is similar to one of the copyrighted scores.

Similarity queries can be classi�ed into two categories:

a. Whole Matching. The sequences to be compared have the same length n.

�On sabbatical from the Dept. of Computer Science, University of Maryland, College Park. This research was
partially funded by the Systems Research Center (SRC) at the University of Maryland, and by the National Science
Foundation under Grant IRI-8958546 (PYI), with matching funds from EMPRESS Software Inc. and Thinking
Machines Inc.

1

b. Subsequence Matching. The query sequence is smaller; we look for a subsequence in the large
sequence that best matches the query sequence.

We concentrate on whole matching, and present an indexing technique that can be used to e�ciently
process such queries. Within the whole matching case, we consider the following problems:

a1. Range Query. Given a query sequence, �nd sequences that are similar within distance �.

a2. All-Pairs Query (or `spatial join'). Given N sequences, �nd the pairs of sequences that are
within � of each other.

The parameter � is a distance parameter that controls when two sequences should be considered
similar. It could be either user-de�ned, or determined automatically (eg., �=10% of the 'energy' of
the query sequence; see Eq. 3 for the de�nition of 'energy').

Approximate matching has been attracting increasing interest lately. Motro described a user
interface for vague queries [20]. Shasha and Wang [27] proposed an indexing method that uses
the triangular inequality and some precomputed distances to prune the search. However, the space
overhead of the method seems quadratic on the number of objects, which may make it prohibitive for
large databases. Aurenhammer [5] surveyed recent research on Voronoi diagrams, along with their
use for nearest neighbor queries. Although Voronoi diagrams work well for approximate matches
in 2-dimensional spaces, they need intricate transformations to work for a 3-d space, and they do
not work at all for higher dimensionalities. Jagadish [17] suggested using a few minimum bounding
rectangles to extract features from shapes and subsequently managing the resulting vectors using
a spatial access method, like k-d-B-trees, grid �les, etc. Related e�orts, but not directly applicable
to numerical sequences, include algorithms for approximate string searching [30, 6] with full text
scanning, approximate searching methods for DNA sequences [4], and clustering algorithms in
information retrieval and library science [24].

For numerical sequences, we propose extracting k features from every sequence, mapping it to
k-dimensional space, and then using a multidimensional index to store and search these points.
The multidimensional indexing methods currently in use are R�-trees [7] and the rest of the R-tree
and k-d-Btree family [13, 16, 18]; linear quadtrees [25]; and grid-�les [21]. There are two subtle
problems with this approach that must be addressed:

� Completeness of feature extraction: How to extract features, and how to guarantee that we do
not miss any qualifying object (time sequence, in our case). To guarantee no \false dismissal",
objects should be mapped to points in k-dimensional space such that the Euclidean distance in
the k-dimensional space is less than or equal to the real distance between the two objects.

� Dimensionality \curse": Most multidimensional indexing methods scale exponentially for high
dimensionalities, eventually reducing to sequential scanning. For linear quadtrees, the e�ort is
proportional to the hyper surface of the query region [15]; the hyper surface grows exponentially
with the dimensionality. Grid �les face similar problems, since they require a directory that grows
exponentially with the dimensionality. The R-tree based methods seem to be most robust for
higher dimensions, provided that the fanout of the R-tree nodes remains > 2. Experiments [23]
indicate that R�-trees work well for up to 20 dimensions. The feature extraction method should
therefore be such that a few features are su�cient to di�erentiate between objects.

We propose to use the Discrete Fourier Transform [22, 14] for feature extraction. Given a
sequence, we transform it from the time domain to the frequency domain. We then index only on
the �rst few frequencies, dropping all other frequencies. This approach addresses the two problems
cited above as follows:

2

� Completeness of feature extraction: Parseval's theorem [22], discussed in Section 2, guarantees
that the distance between two sequences in the frequency domain is the same as the distance
between them in the time domain.

� Dimensionality curse: As we discuss in subsection 3.3, a large family of interesting sequences
exhibit strong amplitudes for the �rst few frequencies. Using the �rst few frequencies then avoids
the dimensionality problem, while still introducing few false hits. The false hits are removed in
a post-processing step.

The organization of the rest of the paper is as follows. Section 2 gives some background material
on the Discrete Fourier Transform, and introduces Parseval's theorem that provides the basis for
the indexing technique we propose. A resume of our indexing technique is given in Section 3. We
also justify our choice of similarity measure and the selection of DFT for feature extraction in this
section. Section 4 contains performance experiments that empirically show the e�ectiveness of our
technique. We conclude with a summary in Section 5.

2 Discrete Fourier Transform

We start with a brief overview of the Discrete Fourier Transform (DFT). The importance of the
DFT is the existence of a fast algorithm, the Fast Fourier Transform (FFT), that can calculate the
DFT coe�cients in O(n logn) time. Further information on the Fourier transform can be found in
any digital signal processing textbook, for example, [22, 14].

The n-point Discrete Fourier Transform [22] of a signal ~x = [xt], t = 0; . . . ; n� 1 is de�ned to
be a sequence ~X of n complex numbers Xf , f = 0; . . . ; n� 1, given by

Xf = 1=
p
n

n�1X

t=0

xt exp (�j2�ft=n) f = 0; 1; . . . ; n� 1 (1)

where j is the imaginary unit j =
p�1. The signal ~x can be recovered by the inverse transform:

xt = 1=
p
n

n�1X

f=0

Xf exp (j2�ft=n) t = 0; 1; . . . ; n� 1 (2)

Xf is a complex number (with the exception of X0, which is a real, if the signal ~x is real). There
are some minor discrepancies among books: some de�ne Xf = 1=n

Pn�1
t=0 . . . or Xf =

Pn�1
t=0 We

have followed the de�nition in (Eq 1), for it simpli�es the upcoming Parseval's theorem (Eq 4).

De�nitions: For a complex number c = a + jb = A exp(j�)

� A � jcj is said to be the amplitude and � to be the phase of the number c.

� The conjugate c� of c is de�ned as a� jb.

� The energy E(c) of c is de�ned as the square of the amplitude (E(c)� jcj2 � c c�).

� The energy E(~x) of a sequence ~x is de�ned as the sum of energies at every point of the sequence:

E(~x) �k ~x k2�
n�1X

t=0

jxtj2 (3)

A fundamental observation for this paper is Parseval's theorem [22]:

3

Theorem 1 (Parseval) Let ~X be the Discrete Fourier Transform of the sequence ~x. Then we
have

n�1X

t=0

jxtj2 =
n�1X

f=0

jXf j2 (4)

That is, the energy in the time domain is the same as the energy in the frequency domain.
The Discrete Fourier Transform inherits the following properties from the continuous Fourier

transform. Let `()' indicate Fourier pairs, i.e.,

[xt]()[Xf] (5)

means that [Xf] is the Discrete Fourier Transform of [xt]. The Discrete Fourier Transform is a
linear transformation: If

[xt]()[Xf]; [yt]()[Yf] (6)

then

[xt + yt]()[Xf + Yf] (7)

[axt]()[aXf] (8)

Also, a shift in the time domain changes only the phase of the Fourier coe�cients, but not the
amplitude.

[xt�t0]()[Xf exp (2�ft0j=n)] (9)

Given the above, Parseval's theorem gives

k ~x� ~y k2 � k ~X � ~Y k2 (10)

The latter implies that the Euclidean distance between two signals ~x and ~y in the time domain is
the same as their Euclidean distance in the frequency domain.

We believe that for a large number of time sequences of practical interest, there will be a few
frequencies with high amplitudes. Thus, if we index only on the �rst few frequencies, we shall have
few false hits. This is a key observation for our proposed method.

3 Proposed Technique

We propose using the square root of the sum of squared di�erences as the distance function between
two sequences. Speci�cally, the distance D(~x; ~y) between two sequences ~x and ~y is the square root
of the energy of the di�erence:

D(~x; ~y) � (
n�1X

t=0

jxt � ytj2)1=2 � (E(~x� ~y))1=2 (11)

If this distance is below a user-de�ned threshold �, we say that the two sequences are similar.
The importance of Parseval's theorem (Eq 4) is that it allows to translate the query from the

time domain to the frequency domain. Coupled with the conjecture that few Fourier coe�cients
are enough, it allows us to build an e�ective index with a low dimensionality.

The following is a resume of our proposed technique:

4

1. Obtain the coe�cients of the Discrete Fourier Transforms of each sequence in the database.

2. Build a multidimensional index using the �rst fc Fourier coe�cients, where fc stands for `cut-o�
frequency'. Thus, each sequence becomes a point in a 2fc-dimensional space (recall that the
Fourier coe�cients are complex numbers). We discuss in subsection 3.3 why fc can be taken
to be small (< 5). As discussed earlier, we recommend the R�-trees as the indexing structure,
since it has been shown to work well for at least up to 20 dimensions [23]. This index will be
called `F -index' henceforth.

3. For a range query, obtain the �rst fc Fourier coe�cients of the query sequence. Use the F -
index to retrieve the set of matching sequences that are at most � distance away from the query
sequence.

4. For an all-pairs query, we do a spatial join using the F -index. The result of the join will be a
superset of the answer set.

5. The actual answer set is obtained in a post-processing step in which the actual distance between
two sequences is computed in the time domain and only those within � distance are accepted.

The `completeness' of this method is based on the following lemma:

Lemma 1 The F -index introduces no false dismissals.

We only give the proof for range queries; the proof for `all-pairs' queries is very similar. Suppose
we want all sequences ~x that are similar to a query sequence ~q, within distance �, i.e.:

D(~x; ~q) � � (12)

or, equivalently:

k ~x� ~q k2=
n�1X

t=0

jxt � qtj2 � �2 (13)

Using Parseval's theorem (Eqs. 4, 10), we want all ~X such that

k ~X � ~Q k2=
n�1X

f=0

jXf � Qf j2 � �2 (14)

Keeping only the �rst fc < n coe�cients, we have

fc�1X

f=0

jXf � Qf j2 �
n�1X

f=0

jXf � Qf j2 � �2 (15)

Thus, equation (14) implies the following condition

fc�1X

f=0

jXf �Qf j2 � �2 (16)

In other terms, the condition of (Eq. 16) will retrieve all ~X that are in the answer, plus some false
hits. Thus, our index acts as a �lter that returns a superset of the answer set.

5

3.1 Choice of Similarity Measure

The similarity measure is clearly application-dependent. Several similarity measures have been
proposed, for 1-d and 2-d signals. In a recent survey for images (2-d signals), Brown [8](p. 367,
sect. 4.2) mentions that one of the typical similarity measures is the cross-correlation (which reduces
to the Euclidean distance, plus some additive and multiplicative constants). We have chosen the
Euclidean distance, because (a) it is useful in many cases, as is (b) it can be used with any other
type of similarity measure, as long as this measure can be expressed as the Euclidean distance
between feature vectors in some feature space.

In fact, the Euclidean distance is the optimal distance measure for estimation [12], if signals are
corrupted by Gaussian, additive noise. Thus, if ~q is our query and ~x is a corrupted version of it in
the database, a searching method using the Euclidean distance should produce good results.

A valuable feature of the Euclidean distance is that it is preserved under orthonormal transforms.
Other distance functions, like the Lp norms

Lp(~x; ~y) = (
X

jxt � ytjp)1=p (17)

do not have this property, unless p = 2 (because L2 �Euclidean distance).

3.2 Using DFT

Having decided on the Euclidean distance as the distance measure, we would like a transform that
(a) preserves the distance (b) is easy to compute and (c) concentrates the energy of the signal in
few coe�cients.

The distance-preservation requirement is met by any orthonormal transform [11], DFT being
one of them. Orthonormal transforms form two classes: (1) the data-dependent ones, like the
Karhunen-Loeve (K-L) transform, which need all the data signals to determine the transformation
matrix and (2) the data-independent ones, like the DFT, Discrete Cosine (DCT), Harr, or wavelet
transform, where the transformation matrix is determined a-priori.

The data-dependent transforms can be �ne-tuned to the speci�c data set, and therefore they
can achieve better performance, concentrating the energy into fewer features in the feature vector.
Their drawback is that, if the data set evolves over time, e.g., a recomputation of the transformation
matrix may be required to avoid performance degradation, requiring expensive data reorganization.
We, therefore, favor data-independent transforms.

Among them, we have chosen the DFT because it is the most well known, its code is readily
available and it does a good job of concentrating the energy in the �rst few coe�cients, as we
shall see next. In addition, the DFT has the attractive property that the amplitude of the Fourier
coe�cients is invariant under shifts (Eq. 9). Thus, using Fourier transforms for feature extraction
has the potential that our technique can be extended to �nding similar sequences ignoring shifts.

Note that our approach can be applied with any orthonormal transform. In fact, our response
time will improve with the ability of the transform to concentrate the energy: the fewer the coe�-
cients that contain most of the energy, the faster our response time. Thus, the performance results
presented next are just pessimistic bounds; better transforms will achieve even better response
times.

3.3 Using a Few Fourier Coe�cients for Indexing

Using a small value for the number of Fourier coe�cients retained fc does not a�ect the correctness
| the F -index is a �lter that returns a superset of the answer set. However, our proposed technique
will not be very e�ective if the choice of a small fc results in a large number of false hits.

6

200 400 600 800 1000

a random walk

-25

-20

-15

-10

-5

5

1 5 10. 50.100. 500.

its (log-log) amplitude

0.01

0.1

1

10.

100.

Figure 1: A random walk; amplitude of its Fourier coe�cients; the 1/f line

1 10. 100. 1000. 10000.

log-log plot of x.all

0.00001

0.001

0.1

10.

Figure 2: (Log-log) amplitude of the Fourier transform of the Swiss-franc exchange rate, along with
the 1/f line

The worst-case signal for our method is white noise, where each value xt is completely inde-
pendent of its neighbors xt�1, xt+1. The energy spectrum of white noise follows O(f0) [26], that
is, it has the same energy in every frequency. This is bad for the F -index, because it implies that
all the frequencies are equally important. However, we have strong reasons to believe that real
signals have a skewed energy spectrum. For example, random walks (also known as brown noise
or brownian walks) exhibit an energy spectrum of O(f�2) [26], and therefore an amplitude spec-
trum of O(f�1). Stock movements and exchange rates have been successfully modeled as random
walks (e.g., [9, 19]). Figure 1 illustrates a synthetically generated random walk and its amplitude
spectrum in doubly logarithmic plot | notice the close approximation of the 1=f line.

The movement of the exchange rate between the Swiss franc and the US dollar starting August
7, 1990 to April 18, 1991 (30,000 measurements) is available through ftp from s�.santafe.edu. Using
this data set Figure 2 shows the amplitude of the Fourier coe�cients as well as the 1=f line, in a
doubly logarithmic plot. Observe that the amplitude of the Fourier coe�cients follow the 1=f line,
in the same way that the arti�cially generated random walk of Figure 1 does.

Our mathematical argument for keeping the �rst few Fourier coe�cients agrees with the intuitive

7

argument of the Dow Jones theory for stock price movement (see, for example, [10]). This theory
tries to detect primary and secondary trends in the stock market movement, and ignores minor
trends. Primary trends are de�ned as changes that are larger than 20%, typically lasting more than
a year; secondary trends show 1/3-2/3 relative change over primary trends, with a typical duration
of a few months; minor trends last roughly a week. From the above de�nitions, we conclude
that primary and secondary trends correspond to strong, low frequency signals while minor trends
correspond to weak, high frequency signals. Thus, the primary and secondary trends are exactly
the ones that our method will automatically choose for indexing.

In addition to the above, it is believed that several other families of real signals are not white
noise. For example, 2-d signals, like photographs, are far from white noise, exhibiting a few strong
coe�cients in the lower spatial frequencies. The JPEG image compression standard [29] exactly
exploits this phenomenon, e�ectively ignoring the high-frequency components of the Discrete Cosine
Transform, which is closely related to the Fourier transform. If the image consisted of white noise, no
compression would be possible at all. Birkho�'s theory [26] claims that `interesting' signals, such as
musical scores and other works of art, consist of pink noise, whose energy spectrum follows O(f�1).
The theory argues that white noise with O(f0) energy spectrum is completely unpredictable, while
brown noise with O(f�2) energy spectrum is too predictable and therefore boring. The energy
spectrum of pink noise lies in-between. Signals with pink noise also have their energy concentrated
in the �rst few frequencies (but not as few as in the random walk). There is another group of
signals, called black noise [26]. Their energy spectrum follow O(f�b), b > 2, which is even more
skewed than the spectrum of the brown noise. Such signals model successfully, for example, the
water level of rivers as they vary over time [19].

4 Performance Experiments

To determine the e�ectiveness of our proposed method (the F -index method), we compared it to a
sequential scanning method. We used the R�-tree for the index. For range queries, the sequential
scanning method computes the distance between the query sequence and each data sequence. In our
e�ort to do the best possible implementation for the sequential scanning, we stop the test as soon
as the square of the distance exceeds �2, and we declare the two sequences to be dissimilar. Thus,
a data sequence is fully scanned only if it is similar to the query sequence. For `all-pairs' queries,
each sequence in the database is tested against every other sequence, for a total of N(N � 1)=2
tests.

We investigated the following questions in these experiments:

� How to choose the number of Fourier coe�cients to be retained (cut-o� frequency fc) in the F -
index method. A larger fc reduces the false hits but at the same time increases the dimensionality
of the R�-tree, and hence the search time.

� How does the search time grow as a function of number of sequences in the database?

� How does the length n of the sequences a�ect the performance?

4.1 Experimental setup

We generated synthetic sequences for the experiments. Each sequence ~x = [xt] was a random walk:

xt = xt�1 + zt (18)

where zt (t = 1; 2; . . .) are independent, identically distributed (IID) random variables. For im-
plementation convenience, each zt variable is uniformly distributed in the range (-500, 500). The

8

Parameter Symbol Values Default value

Fourier coe�cients kept fc 1, 2, 3, 4 2
sequences in S jSj 50, 100, 200, 400 400
Length of each sequence n 256, 512, 1024, 2048 1024
Distance (tolerance) � sqrt(1000 � n)

Table 1: Summary of experimental settings

1 2 3 4

11

21

42

81

Number of Fourier Coefficients

T
o

ta
l

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
e

c
)

|S|=50
|S|=100
|S|=200
|S|=400

Figure 3: Time per query vs. # Fourier coe�cients fc, for range queries

probability distribution of each zt is immaterial; the results would be the same had we chosen a
gaussian distribution, or a fair, random coin. For each set S of N sequences, queries were generated
by creating a distorted copy [~xt] of each sequence [xt] in S. This was accomplished by adding a
small amount of noise to every xt, i.e.,

~xt = xt + p wt (19)

where p=0.05 and wt (t = 1; 2; . . .) are IID random variables, each following a uniform distribution
in the range (-500,500).

Let Q be the set of distorted sequences, which we shall use as queries. For range queries, we
search S for sequences within distance � for every distorted sequence in Q. For all-pairs queries,
we concatenate S and Q, and ask for all sequence pairs within � distance. The execution time for
the F -index method includes both the search time in the R�-tree and the post-processing time.

Each experiment was replicated 10 times by generating 10 sequence sets with di�erent seeds,
and averaging the execution times for the replicates. Table 1 summarizes the parameters of the
experiments.

9

1 2 3 4

1.2

19

76

90

Number of Fourier Coefficients

T
o

ta
l

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
s
)

|S|=50
|S|=100
|S|=200
|S|=400

Figure 4: Time per query vs. # Fourier coe�cients fc, for all-pairs queries

1 2 3 4

5

16

63

80

Number of Fourier Coefficients

T
im

e
 (

m
s
e

c
)

Search
Post
Total

Figure 5: Breakup of the execution time, for range query (jSj = 400)

1 2 3 4

6

26

50

76

90

Number of Fourier Coefficients

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
s
)

Search
Post
Total

Figure 6: Breakup of the execution time, for all-pairs query (jSj = 400)

10

50 100 200 400

11
21

42

80

178

Sequence Set Size

T
o

ta
l

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
e

c
)

F–Index
Seq

Figure 7: Time per query varying # sequences jSj, for range queries

50 100 200 400

1.2

19

35

76

142

Sequence Set Size

T
o

ta
l

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
s
)

F–Index
Seq

Figure 8: Time per query varying # sequences jSj, for all-pairs queries

256 512 1024

25

75

125

175

Sequence length

T
o

ta
l

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
e

c
)

F–Index
Seq

Figure 9: Time per query varying the sequence length n, for range queries

11

256 512 1024

25

50

75

100

125

150

Sequence length

T
o

ta
l

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
e

c
)

F–Index
Seq

Figure 10: Time per query varying the sequence length n, for all-pairs queries

12

4.2 Varying the cut-o� frequency fc

Figures 3 and 4 show the execution time per query for range and all-pairs queries respectively,
for di�erent number of sequences in S. Figures 5 and 6 give the the total execution time by the
F-index method for the two types of queries, broken into (a) search time in the R�-tree and (b)
post-processing time (where the `false hits' are eliminated). The latter two graphs have been plotted
for jSj = 400 sequences in S.

As the number of Fourier coe�cients (`cut-o� frequency' fc) increases, the dimensionality of
the R�-tree increases. Recall that each Fourier coe�cient, being a complex number, increases the
dimensionality of the R�-tree by 2. The increase in dimensionality results in better index selectivity,
which gives fewer false hits. This reduction in false hits is re
ected in the post-processing time,
which decreases with the cut-o� frequency. However, the time to search the R�-tree increases with
the dimensionality, because the fanout is smaller, and the tree is taller. Figures 5 and 6 validate
the above intuitive arguments.

Given the trade-o� between the tree-search time and the post-processing time, it is natural
to expect that there is an `optimal' fc. Indeed, the total execution time of our method shows
such a minimum, as illustrated in Figures 3 and 4. Notice that this minimum is rather
at, and,
more importantly, it occurs for small values of the cut-o� frequency fc. This experiment con�rms
our early conjecture that we can e�ectively use a small number of Fourier coe�cients for indexing
sequences. For the rest of the experiments, we kept fc=2 Fourier coe�cients for indexing resulting
in a 4-dimensional R�-tree.

4.3 Varying the number of sequences in the database

The next experiment compares the F -index method with the sequential scanning method for in-
creasing number of sequences in the database. Figures 7 and 8 show the execution time per query
for range and all-pairs queries respectively, for di�erent values of the number of sequences in jSj.
Clearly, the F -index method outperforms the sequential scanning. As the number of sequences
increases, the gain of the F -index method increases, making this method even more attractive for
large databases.

4.4 Varying the length of sequences

We varied the length of sequences, keeping the number jSj of sequences in S �xed to 400. The
distance parameter � was set to (1000 � n)1=2 (where n is the length of a sequence). Figure 9
shows the execution time per query for range queries for di�erent sequence lengths. The gain of
the F -index method increases with n. Figure 10 shows the results of the experiments for all-pairs
queries. The trends are similar to the trends for range queries.

4.5 Discussion

The major conclusions from our experiments are:

� The minimum execution time for both range and `all-pairs' queries is achieved for a small number
of Fourier coe�cients (fc = 1� 3). Moreover, the minimum is rather
at, which implies that a
sub-optimal choice for fc will give search time that is close to the minimum.

� Increasing the number of sequences in the database results in higher gains for our method.

� Increasing the length of the sequences n also results in higher gains for our method.

13

Thus, the experiments show that the proposed F -index method achieves increasingly better
performance, as the volume of the data increases.

Finally, we also examined whether a `naive' feature extraction method would work as well. For
example, consider a method that keeps the �rst few values of each time sequence, and indexes
on them. We carried out an experiment in which we indexed on the �rst 10 values of each time
sequence. The performance of this method was very poor compared to the F -index method; there
were many false hits, resulting in a large post-processing time. Judging that further details are of
little interest, we omit the experimental results.

5 Summary

We proposed a method to index time sequences for similarity searching. The major highlights of
this method are:

� The use of an orthonormal transform, and speci�cally, the Discrete Fourier Transform, to extract
features from a sequence. The attractive property of the DFT is that the Euclidean distance in
the time domain is preserved in the frequency domain, thanks to Parseval's theorem. Thus, the
DFT ful�lls the \completeness of feature extraction" criterion. In addition, the DFT is fast to
compute (O(n logn)).

� The recognition that a large family of sequences have only a few (fc) strong Fourier coe�cients.
For example, random walks, stock price movements, exchange rates, exhibit an amplitude spec-
trum of O(1=f). Ignoring the weak coe�cients, we introduce a few false hits, but no false
dismissals. The importance of this observation is that it avoids the \dimensionality curse" at the
expense of a modest post-processing cost. Keeping the �rst fc coe�cients, each sequence becomes
a point in a 2fc{dimensional space (recall that the Fourier coe�cients are complex numbers).

� The use of spatial access methods, and speci�cally R�-trees, to index those points. We believe
that R�-trees are more robust than their competitors, for medium dimensionalities.

Extensive empirical evaluation demonstrated the e�ectiveness of the proposed method. We gener-
ated random walks, which model well stock price movements. The conclusions from our experiments
are the following: (a) the execution time of our method shows a rather
at minimum for a small
cut-o� frequency (fc � 1-3) (b) compared to sequential scanning, our method achieves better gains
with increasing number of sequences and increasing length. Thus, our method will be more and
more attractive, as the volume of the database increases.

Although we have made certain choices (Euclidean distance between sequences in time domain
for similarity measure, DFT for feature extraction, and R� tree for maintaining indexes), our
technique can be trivially adapted for

� any similarity measure that can be expressed as the Euclidean distance between feature vectors
in some feature space

� any distance-preserving (eg., orthonormal) transform (the more the energy is concentrated in a
few coe�cients, the faster the response time)

� any multi-dimensional index that performs well for the number of features indexed.

Future work could examine the following issues

� Examination of other orthonormal transformations, in addition to the Discrete Fourier Transform.

14

� Extensions of our approach to 2-d and higher-dimensionality signals (e.g., images), in addition
to 1-d signals (time sequences) that we have examined.

The work reported in this paper has been done in the context of the Quest project [1] at the
IBM Almaden Research Center. In Quest, we are exploring the various aspects of the database
mining problem. Besides the problem of queries over large sequences, some other problems that we
have looked into include the enhancement of the database capability with the classi�cation queries
[2] and with \what goes together" kinds of association queries [3]. The eventual goal is to build
an experimental system that can be used for mining rules embedded in massive databases. We
believe that database mining is an important application area, combining commercial interest with
intriguing theoretical questions.

Acknowledgements: We thank Myron Flickner for several constructive comments and for his
help with Parseval's theorem. We thank Harpreet Sawhney for pointing out the optimality of the
Euclidean distance as the similarity measure under Gaussian, additive noise.

References

[1] R. Agrawal, T. Imielinski, and A. Swami, \Database Mining: A Performance Perspective",
IEEE Transactions on Knowledge and Data Engineering, Special issue on Learning and Dis-
covery in Knowledge-Based Databases, (to appear).

[2] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami, \An Interval Classi�er for Database
Mining Applications", VLDB 92 , Vancouver, August 1992.

[3] R. Agrawal, T. Imielinski, and A. Swami, \Mining Association Rules between Sets of Items in
Large Databases", ACM SIGMOD, Washington D.C., May 1993.

[4] S.F. Altschul, W. Gish, W. Miller, E.W. Myers and D.J. Lipman, \A Basic Local Alignment
Search Tool" Journal of Molecular Biology, 1990.

[5] F. Aurenhammer, \Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure"
ACM Computing Surveys 23(3):345-405, Sept. 1991.

[6] Ricardo Baeza-Yates and Gaston H. Gonnet, \A New Approach to Text Searching", Comm.
of ACM, 35 10, Oct. 1992, 74-82.

[7] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, \The R*-tree: an e�cient and robust
access method for points and rectangles", ACM SIGMOD, pages 322{331, May 1990.

[8] L. G. Brown, \A Survey of Image Registration Techniques", ACM Computing Surveys, 24(4),
pages 325{376, December 1992.

[9] C. Chat�eld, The Analysis of Time Series: an Introduction, Chapman and Hall, London &
New York, 1984, Third Edition.

[10] R. D. Edwards and J. Magee, Technical Analysis of Stock Trends, John Magee, Spring�eld,
Massachusetts, 1966, 5th Edition, second printing.

[11] K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, 1990, 2nd Edi-
tion.

15

[12] A. Gelb, Applied Optimal Estimation, MIT Press, 1986.

[13] A. Guttman, \R-trees: a dynamic index structure for spatial searching", Proc. ACM SIGMOD,
pages 47{57, June 1984.

[14] Richard Wesley Hamming, Digital Filters, Prentice-Hall Signal Processing Series, Englewood
Cli�s, N.J., 1977.

[15] G. M. Hunter and K. Steiglitz, \Operations on images using quad trees", IEEE Trans. on
PAMI, PAMI-1(2):145{153, April 1979.

[16] H. V. Jagadish, \Spatial search with polyhedra", Proc. Sixth IEEE Int'l Conf. on Data Engi-
neering, February 1990.

[17] H. V. Jagadish, \A retrieval technique for similar shapes", Proc. ACM SIGMOD Conf., pages
208{217, May 1991.

[18] D. Lomet and B. Salzberg, \The Hb-Tree: a Multiattribute Indexing Method with Good
Guaranteed Performance", ACM TODS, 15(4), pages 625{658, December 1990.

[19] B. Mandelbrot. Fractal Geometry of Nature, W.H. Freeman, New York, 1977.

[20] A. Motro, \VAGUE: A User Interface to Relational Databases that Permits Vague Queries,"
ACM Trans. on Information Systems (TOIS), 6(3), pages 187{214, July 1988.

[21] J. Nievergelt, H. Hinterberger, and K. C. Sevcik, \The grid �le: an adaptable, symmetric
multikey �le structure", ACM TODS, 9(1):38{71, March 1984.

[22] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall, Englewood
Cli�s, N.J., 1975.

[23] M. Otterman, \Approximate Matching with High Dimensionality R-trees", M.Sc. scholarly
paper, Dept. of Computer Science, Univ. of Maryland, College Park, MD, 1992.

[24] G. Salton and M.J. McGill, Introduction to Modern Information Retrieval, McGraw-Hill, 1983.

[25] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, 1989.

[26] M. Schroeder, Fractals, Chaos, Power Laws: Minutes From an In�nite Paradise, W.H. Free-
man and Company, New York, 1991.

[27] D. Shasha and T-L. Wang, \New techniques for best-match retrieval", ACM TOIS, 8(2):140{
158, April 1990.

[28] R. Stam and R. Snodgrass, \A Bibliography on Temporal Databases", IEEE Bulletin on Data
Engineering, 11(4), Dec. 1988.

[29] G. K. Wallace \The JPEG Still Picture Compression Standard", CACM, 34(4):31{44, April
1991.

[30] Sun Wu and Udi Manber, \Text searching allowing errors", Comm. of ACM (CACM),
35(10):83{91, October 1992.

16

