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Abstract. We describe Athena: a system for creating, exploiting, and
maintaining a hierarchy of textual documents through interactive mining-

based operations. Requirements of any such system include speed and

minimal end-user e�ort. Athena satis�es these requirements through
linear-time classi�cation and clustering engines which are applied in-

teractively to speed the development of accurate models.
Naive Bayes classi�ers are recognized to be among the best for classify-

ing text. We show that our specialization of the Naive Bayes classi�er

is considerably more accurate (7 to 29% absolute increase in accuracy)
than a standard implementation. Our enhancements include using Lid-

stone's law of succession instead of Laplace's law, under-weighting long

documents, and over-weighting author and subject.
We also present a new interactive clustering algorithm, C-Evolve, for

topic discovery. C-Evolve �rst �nds highly accurate cluster digests (par-
tial clusters), gets user feedback to merge and correct these digests, and

then uses the classi�cation algorithm to complete the partitioning of the

data. By allowing this interactivity in the clustering process, C-Evolve
achieves considerably higher clustering accuracy (10 to 20% absolute in-

crease in our experiments) than the popular K-Means and agglomerative

clustering methods.

1 Introduction

People and organizations are amassing more and more data in the form of un-

structured or semi-structured textual documents, due mostly to the ourishing

of e-mail and world-wide web usage. Systems that manage text databases typi-

cally provide support for keyword queries and manual arrangement of documents

into a hierarchical (\folder") structure. Bene�ts of a folder hierarchy include the

ability to quickly locate a document without having to remember the exact key-

words contained in that document, and the ability to easily browse a set of

related documents. Unfortunately, the task of maintaining coherent folders is

time consuming, and often unused or under-used as a result. For example, many

if not most e-mail users simply allow their messages to accumulate in the inbox

where these messages remain until they are deleted. As a result, the bene�ts of a

well-maintained folder hierarchy are never realized. Outside the e-mail context,



web search engines such as Yahoo! [Yah] and several e-commerce sites with large

product catalogs provide and maintain hierarchical categorizations to enhance

the usability of search results and to facilitate browsing.

In this paper, we present a system henceforth referred to as Athena1 that

simpli�es the process of hierarchical document organization through text mining

algorithms. Athena is currently implemented on top of Lotus Notes [Lot] to

support the management of e-mail and discussion databases, though the concepts

apply equally well to other document repositories including collections of web

pages or text �les. Important functionality of Athena includes:

{ Topic Discovery: Decompose an unorganized collection of documents into

groups so that each group consists of documents on the same topic.

{ Hierarchy Reorganization: Reorganize a hierarchical collection of documents

into another hierarchy.

{ Hierarchy Population and Inbox Browsing: Use the information contained in

the current populated hierarchy to organize documents in Inbox by topic

and/or automatically route new documents. Documents that �t in multiple

categories can optionally be routed to (or displayed under) several categories.

{ Hierarchy Maintenance: Identify mis�led documents in a node of the hierar-

chy and detect concept drift within a node.

A more detailed description of the Athena functionality is given in [ABS99].

Classi�cation and clustering are the two basic building blocks used for im-

plementing the above functionality. These technologies have been studied exten-

sively in the areas of statistics, data-mining, information retrieval, and machine

learning. However, standard techniques performed poorly for our application. For

example, Naive Bayes classi�ers [Goo65] are recognized to be among the best for

classifying text. We found that by specializing Naive Bayes for our application,

we could reduce the number of errors by 30 to 60% (with 7 to 29% absolute

increase in accuracy) when compared to a standard implementation. Our en-

hancements include using Lidstone's law of succession instead of Laplace's law,

under-weighting long documents, and weighting author and subject.

Clustering algorithms applied in this domain must be fast to avoid taxing the

patience of the user. We present a new linear-time interactive clustering algo-

rithm, C-Evolve, for topic discovery. C-Evolve �rst �nds highly accurate cluster

digests (partial clusters), gets user feedback to merge/correct these digests, and

then uses the classi�cation algorithm to complete the partitioning of the data.

By allowing interactivity in the clustering process, C-Evolve is considerably more

accurate (10 to 20% absolute increase in accuracy in our experiments) than K-

Means [Ras91] as well as agglomerative clustering methods [Ras91].

Paper Layout In the rest of this section, we discuss related work on systems

for routing or clustering email or text documents. (We discuss related work in
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clustering or classi�cation algorithms in Sections 3 and 4.) We describe the tech-

nical details of the classi�cation component in Section 2, along with experimental

results justifying our design decisions. Section 3 goes into the technical details

of the clustering component, and also provides an empirical evaluation of its

e�cacy. Section 4 concludes with a summary and directions for future work.

Related Work There have been at least three previous proposals on the de-

velopment of classi�cation models for the purpose of routing e-mail, either in

general [Coh96] [SK99] or for the special case of junk-mail [SDHH98]. Other

systems provide agents that assist e-mail users by predicting an action the user

is likely to take [Mae94] [PE97]. None of these proposals address the task of

textual database organization outside of routing incoming documents.

Other related work includes the Scatter/Gather system [CDPT92], which

uses on-line clustering to assist the user in browsing large collections of docu-

ments. While Scatter/Gather does not directly address the problem of creating

and maintaining a lasting document organization, many of the requirements of

our systems are similar, such as the need for fast, on-line algorithms capable of

extracting useful information from text, and the need to involve the user in the

process of applying these algorithms. We make a more detailed comparison of

our system to Scatter/Gather in a later section. SONIA [SYB98] uses agglomer-

ative text clustering to organize the results of queries to networked information

sources, and Naive Bayes classi�cation to organize new documents within an

existing categorization scheme.

2 Classi�cation Component

Athena's classi�cation component is used for hierarchy reorganization, docu-

ment routing, and identi�cation of mis�led documents. We decided to base our

classi�er on the Naive-Bayes model [Goo65] for the following reasons:

{ Naive-Bayes classi�ers are very competitive with other techniques for text

classi�cation [CDAR97] [LR94] [Lan95] [PB97] [MN98].2

{ They stabilize quickly [Koh96], which supports automated hierarchy reorga-

nization with a limited number of examples.

{ They are fast. They can be constructed quickly with a single pass over

the documents, making them suitable for on-line model creation; they also

quickly classify incoming documents [CDAR97].

{ They are simple to update in the presence of document additions or deletions,

making them easy to maintain.

2 We also experimented with using the SPRINT decision-tree classi�er [SAM96], but

found it had low accuracy in this domain due to the small number of examples per
class and the large feature space.



The basic Naive-Bayes classi�er estimates the posterior probability of class

Ci given a document d via Bayes' rule:

Pr(Cijd) =
Pr(djCi) � Pr(Ci)

Pr(d)

We ignore Pr(d) since it is the same for all classes. Pr(Ci) is estimated by:

Pr(Ci) =
Number of documents in class Ci

Total number of documents in the dataset

To estimate Pr(djCi), we \naively" assume that all the words in the document

occur independently to get

Pr(djCi) =
Y
w2d

Pr(wjCi)

Let n(Ci; w) be the number of occurrences of word w in class Ci (counting multi-

ple occurrences), and n(Ci) =
P

w n(Ci; w) the total number of words in class Ci.

Then the maximum likelihood estimate for Pr(wjCi) is simply n(Ci; w)=n(Ci).

However, using this estimate would give a probability of zero for any word that

does not occur in the class, and thus result in Pr(djCi) being zero for any doc-

ument d that contained a word not present in class Ci. The standard approach

to address this problem (e.g. [CDAR97] [Mit97] [KMST98]) is to smooth the

maximum likelihood estimate with Laplace's law of succession [Goo65] to get

Pr(wjCi) =
n(Ci; w) + 1

n(Ci) + jV j
(1)

where jV j is the size of the vocabulary (i.e., the number of distinct words in the

dataset). The above formula is the result of assuming that all possible words are

a priori equally likely (see [Ris95] for details).

Following [MN98], we use the multinomial form of the Naive Bayes classi�er

where each document is treated as a bag of words rather than a set of words to

yield better accuracy.

2.1 Enhancing the Naive-Bayes Classi�er

We �rst specialized the standard Naive-Bayes classi�er by applying techniques

such as under-weighting long documents and over-weighting author and subject

[ADW94]. To over-weight subject (author) by w times, we treated the subject

(author) as if each of the words in the subject (author) had occurred w times

rather than just once. To prevent long documents from dominating the folder

pro�le, we under-weighted documents with more then l words (for some threshold

l) by treating each word as if it had occured only l/n(d) times, where n(d) is the

number of words in the document. The weights and thresholds were determined

by using a part of the training set as a validation set. These enhancements

cumulatively yielded upto 3% accuracy improvements in our experiments.



Small Class Large Class

Vocabulary 10,000 10,000
Number of Words 1000 100,000

Number of occurrences of word w 10 1000

Pr(wjc) w/o correction 1% 1%
Pr(wjc) with correction 0.1% 0.91%

Fig. 1. Skew due to Laplace Correction

In search for ideas for larger improvements in accuracy, we examined the

words that had the maximum impact on the classi�cation of a document. These

words can be found by looking at the ratio of Pr(wjc)=Pr(wjc0), where c is the

class Athena chose and c0 the class for which Pr(wjc0) is highest. Investigation

of some misclassi�ed documents revealed that the probability estimate of some

words was being highly skewed by the Laplace correction. Figure 1 explains this

skew with an example. Word w has a maximum likelihood estimate of 1% in

both classes. However, after applying the Laplace correction, it is considered 9

times more likely to appear in the large class as in the small class. Hence we

suspected that the Laplace correction was creating a strong bias towards larger

classes.

Lidstone's law of succession We then replaced Laplace's law of succession

with Lidstone's law of succession. For positive �, we estimate Pr(wjCi) to be

Pr(wjCi) =
n(Ci; w) + �

n(Ci) + �jV j
(2)

This class of probability estimates is due to the actuaries G.F. Hardy [Har89]

and G.J. Lidstone [Lid20] at the turn of the century. The above estimate is a

linear interpolation of the maximum likelihood estimate n(Ci; w)=n(Ci) and the

uniform prior 1=jV j. This can be seen by rewriting (2) with the substitution

� = n(Ci)=(n(Ci) + �jV j):

Pr(wjCi) = �
n(Ci; w)

n(Ci)
+ (1� �)

1

jV j

Note that if � = 1, the Lidstone correction is identical to the Laplace correction.

In their attempt to improve the accuracy of Naive Bayes, Kohavi et al [KBS97]

also experimented with Lidstone correction using the datasets available in the

UCI repository.None of these datasets consists of textual data. They found that

using � = 1/total records, they could slightly reduce the average absolute error

(by 1%, from 19.59% to 18.58%) compared to Laplace correction.

Empirical Evaluation We ran experiments on the datasets shown in Table 1.

A, B, C and D refer to four email datasets, while Reuters is the single-category



Dataset #Folders #Docs #Docs/Folder #Words/Folder Vocabulary

Avg � Std. Dev. Avg � Std. Dev.

A 53 768 14 � 25 4K � 4K 15K

B 38 1,039 25 � 34 10K � 17K 23K

C 204 2,995 15 � 23 5K � 9K 39K
D 15 964 64 � 47 18K � 13K 15K

Reuters 82 11,367 138 � 517 15K � 36K 24K

Table 1. Dataset Characteristics
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Fig. 2. Lidstone Correction

version of Distribution 1.0 of Reuters-215783. Notice that three of the four email

datasets have a very large number of classes, ranging from 38 to 204, and very

few examples per class, ranging from 25 to just 14 documents. All our accuracy

numbers were computed using 10-fold cross-validation.

Figure 2(a) shows the change in accuracy as we vary � in the Lidstone correc-

tion, relative to the accuracy for the Laplace correction (� = 1). The accuracy

improved by 4% to 26%, with the largest gains on those datasets where the ac-

curacy numbers were low. The number of errors was reduced by between 25%

and 60% on these datasets (details given later in Table 2). The optimal value of

� varied between 0.2 and 0.01, depending on the dataset.

Recall our hypothesis that the reason for the improvement in accuracy due to

decreasing � is the bias towards large classes produced by the Laplace correction.

To verify this hypothesis, we need to measure the size bias of the classi�er. For

any misclassi�ed documents d, let Cm be the misclassi�ed class and Cr the

right class. We use the geometric mean of n(Cm)=n(Cr) over all misclassi�ed

documents as a measure of the size bias of the classi�er. Figure 2(b) shows that

the size bias decreases dramaticallywith decreasing �, con�rming our hypothesis.

At � = 1, the misclassi�ed class is between 2 and 9 times larger than the right

class. At the optimal � values for the datasets, the ratio is between 1 and 2.5.

3 Available from http://www.research.att.com/ lewis



Dataset Number of Standard Lidstone Final Reduction Top 3

Classes in Errors classes

A 53 60.5 � 5.7 71.5 � 6.3 72.4 � 5.4 30% 84.4 � 5.5

B 38 66.2 � 5.4 84.8 � 1.7 86.9 � 2.4 61% 95.1 � 2.0

C 204 47.0 � 3.0 74.4 � 1.9 76.1 � 2.3 55% 88.1 � 2.7
D 15 81.6 � 4.2 88.6 � 3.2 88.9 � 1.8 40% 98.1 � 1.6

Reuters 82 79.9 � 1.3 84.8 � 1.0 85.2 � 1.2 26% 94.8 � 0.7

Table 2. Accuracy � Standard Deviation

Note that dataset C, for which decreasing � gave the most dramatic gains, also

has the largest change in the size bias, decreasing from 9 to 2.5.

Given the sensitivity of accuracy to the value of �, Athena uses an automatic

procedure to select the optimal value of � on a per-dataset basis. We use a

portion of the training set as a validation set, and compute the accuracy of the

classi�er over this validation set for various values of � to obtain the optimal

value.

Recent work by McCallum et al. [MRMN98] uses both the uniform prior and

a global prior (the frequency distribution over the entire dataset) to smooth the

maximumlikelihood estimate. Their algorithm uses expectation maximization to

assign weights to each of these distributions on a per-class basis. This procedure

typically requires a dozen or so iterations over the data, which can be expensive.

Summary of Results Table 2 shows the accuracy of the classi�er for several

versions:

{ Standard: Standard Naive Bayes classi�er with Laplace correction

{ Lidstone: Classi�er using Lidstone correction instead of Laplace correction,

with the optimal value of � determined automatically using part of the train-

ing set as a validation set.

{ Final: Classi�er using Lidstone correction that additionally over-weights au-

thor and subject, and under-weights long documents.

{ Reduction in Errors between the Standard version and the Final version.

{ Top 3 classes: Accuracy of the classi�er when the classi�er is judged correct

if any of the top 3 choices were correct.

We observe large gains in accuracy due to Lidstone's correction, and small (but

useful) gains in accuracy due to over-weighting author and subject, and under-

weighting long documents. The increase in absolute accuracy ranged from 7 to

29% for the email datasets, with a 30 to 61% reduction in the number of errors.

We also note that the classi�er accuracy is signi�cantly higher when considering

the top three classes. These accuracies can be achieved by applications which

make multiple recommendations for document routing (e.g. [SK99]), allowing

the user to make the �nal selection. Additionally, in this application domain,

many documents naturally belong to multiple classes. Multiple classi�cations of

a document can be useful for informing the user of this possibility.



3 Clustering Component

The clustering component is responsible for topic discovery within an unor-

ganized collection of documents. We have developed an interactive approach to

clustering which involves iteratively presenting the user with a perusable number

of related documents that suggest how a speci�ed folder might be decomposed.

We call such a set of documents a cluster digest. This term is borrowed from the

Scatter/Gather system [CDPT92], which uses on-line text clustering to assist the

user in browsing a document collection. In Scatter/Gather, cluster digests are

presented to the user to determine which documents in the collection are worth

browsing. Unlike Scatter/Gather, Athena does not produce a complete cluster-

ing before forming the cluster digests. Instead, it applies a novel algorithm that

produces the digests directly. This results in response times suitable for on-line

application, with equivalent or better results. The algorithm can also produce

these digests incrementally, allowing the incorporation of feedback from the user

into the clustering model before producing additional results, and avoiding any

need for the user to specify a desired number of clusters apriori.

There are multiple proposals for text clustering, with many of the most pop-

ular and e�ective belonging to the agglomerative class [Ras91]. A drawback of

this class of algorithms is they are at best of quadratic runtime complexity,

limiting their usefulness in on-line applications such as ours. To overcome this

limitation, Scatter/Gather uses a complex intermixing of iterative partitional

clustering algorithms (e.g. K-Means) and an agglomerative scheme. The basic

idea is to apply the inferior but fast partitional clustering algorithm until the

document set has been decomposed to a point where agglomerative clustering

can be used e�ciently. Because we found that a complete clustering typically

contains too many errors to be useful for reorganizing a document collection, we

instead opted to develop a new algorithm that very quickly produces only the

cluster digests for topic discovery, and leaves further document partitioning to

the classi�er. Our experiments reveal that this approach is considerably more

accurate.

Our algorithm can be thought of as \evolving" one cluster digest at a time.

After evolving a new digest, it is presented to the user who can discard irrelevant

documents, move documents between the digests, and even discard a digest

entirely. After these modi�cations are made, additional digests can be mined

from the remaining documents at the user's request. In implementing clustering

in this manner, the user need not specify up-front an exact number of clusters

to discover.

3.1 Algorithm Details

The pseudo-code for the digest evolution routine appears in Figure 4. We call

the algorithm C-Evolve(n), where the variable n speci�es the number of cluster

digests to evolve simultaneously. (Only the best of this set is returned.) This

algorithm is called once for each cluster desired by the user.



Input variables:

A set D of input documents.

A set P of previously-discovered cluster digests (possibly empty).

An integer n specifying the number of clusters to evolve simultaneously.
An integer DIGEST SIZE bounding the number of documents in a cluster.

Return value:

A cluster digest consisting of at most DIGEST SIZE documents from D.
Score Function: See algorithm description.

Algorithm:

1. Remove documents within the digests of P from D.
2. Initialize a cluster C1 with a random document from D.

3. For i = 2 : : : n

Initialize a cluster Ci with the document d in D that minimizes the following:
max(8j=1:::i�1 sim(d; Cj))

4. For i = 1 : : : n

Let cluster C 0

i contain the top min(jCij+ 1, DIGEST SIZE) scoring
documents d according to score(d; Ci; P )

5. If there exists some i = 1 : : : n such that Ci 6= C
0

i ,

(a) Ci := C
0

i for all i = 1 : : : n
(b) goto step 4.

6. Return the cluster Ci out of C1 : : : Cn that maximizes the following:

min(8d2Ci score(d; Ci; P ))

Fig. 3. The C-Evolve(n) algorithm for evolving a cluster digest.

The pseudo-code makes use of a similarity function, sim(), that returns a

oating point value between 0 and 1 (with 1 indicating maximum similarity).

This function must accept either a single document or a set of documents for each

of its two arguments. In our experiments, we use the Scatter/Gather approach for

computing similarities: Similarity of a document pair is given by cosine distance

between vectors of term frequencies, with term frequencies damped by the square

root function. Similarity of two clusters is then given by the average pair-wise

similarity between their documents.

Another function used by the pseudo-code, score(), accepts a document, a

cluster digest C, and a set of cluster digests P . The return value of this function

is maximized when the document is highly similar to cluster C, and highly dis-

similar to those clusters within P . We use the method below for computing such

a value, though C-Evolve can use other scoring functions with these properties.

score(d;C; P ) =

�
min( 8Cp2P [sim(d;C)� sim(d;Cp)] ) if P non-empty,

sim(d;C) otherwise

The �rst three steps of the algorithmperform initialization,which involves re-

movingdocuments from the input set that already belong to previously-discovered

cluster digests, and seeding the n clusters with documents that are dissimilar

to each other. This seeding policy spreads the search for a good cluster digest

across the document space.



Step 4 grows the clusters one document at a time until the maximum size is

reached and clusters stop changing. By virtue of the scoring function, this step

not only attempts to maximize similarity between documents within a given

cluster, but also dissimilarity between the evolving cluster and previously dis-

covered clusters. This ensures that, even though the algorithm is not performing

a complete partitioning of the input documents, the evolving digests are likely to

discover a topic that is not already represented by the existing ones. Note that

this scheme is not entirely greedy { that is, a document added to the cluster

may disappear from it in a later iteration. Even though a document may score

highly during an early iteration, as the cluster evolves it may no longer score so

highly. This feature ensures such documents are removed to improve the �nal

result.

Athena employs C-Evolve with the parameter n set to 6. This setting was cho-

sen because it yielded good results, and it is small enough to guarantee response

times of a few seconds given a document collection of a thousand documents, a

cluster digest size of 10-20, and a Java based implementation.

There is no simple way to obtain a tight bound on the iterations performed by

C-Evolve(n) since the clusters can continue to evolve after reaching the desired

size. In practice, however, the number of iterations performed after the cluster

digest has reached the desired size is typically small, usually well under 5. This

amounts to a linear average-case complexity assuming the cluster digest size

and the value of n are bounded by constants. If desired, the number of iterations

can be hard-bounded by a small constant to guarantee linear complexity in the

worst-case. If the user desires a larger cluster digest, e.g. one that is proportional

to the collection size instead of bounded by a constant, the procedure can be

modi�ed to grow the cluster more than a single document at a time. We have

found that slow cluster growth is most helpful during the early iterations of

the procedure, so growth can be accelerated during later iterations in order to

guarantee linear complexity without signi�cantly compromising the results.

3.2 Evaluation

In this section, we compare C-Evolve with more traditional clustering methods

including K-Means and Hierarchical Agglomerative Clustering [Ras91]. Our �rst

suite of experiments evaluates how well C-Evolve performs when �nding cluster

digests compared to these other (appropriately modi�ed) techniques. Because

agglomerative and K-Means clustering fully partition the input documents, in

order to produce cluster digests, we modi�ed them to return the most central

documents of each cluster. The second suite of experiments evaluates how well C-

Evolve, when applied interactively with the classi�er from the previous section,

compares to these other clustering methods when fully partitioning the input

documents.

Agglomerative clustering algorithms work by placing each document in its

own cluster, and then iteratively merging the pair of most similar clusters until



the desired number of clusters remain. In our implementation, cluster similarity

is given by average pair-wise similarity between the documents from each cluster.

We use the same document similarity function (cosine distance) and document

representation (term frequencies damped by the square-root function) for all

clustering algorithms to ensure a fair comparison. This algorithm is exactly the

\reference" clustering algorithm used in Scatter/Gather [CDPT92].

K-Means clustering seeds each initial cluster (the number of which equals

the number of desired clusters) with a single randomly chosen document. A pass

is made over the input documents and each document is placed moved into the

cluster that is most similar to it. This process repeats until the clusters stop

changing, at which point they are returned.

We used e-mail collections to evaluate these algorithms, obtained from co-

workers who diligently �le their e-mail, along with the standard Reuters-21578

benchmark data4 in order to show the results apply more generally. (Table 1

shows some of the characteristics of these datasets.) For each data-set, we se-

lected at most 100 documents from each folder/category to prevent folders with

many documents (e.g. those compiled from an active mailing list) from exces-

sively slowing the agglomerative algorithms5 and overly skewing the input dis-

tribution. For the Reuters data, each document was placed into a \folder" cor-

responding to the �rst topic to which it is assigned.

Evaluating Topic Discovery We assume that the organization provided by

the folder hierarchy from each data-set is the \true" clustering of the data. For

each data-set, �fty trials were performed, where for each trial, six folders were

selected at random from a given data-set and the documents intermixed. Each

clustering algorithmwas then run on the resulting document collection and made

to identify three cluster digests containing 11 documents each.

We chose to identify a smaller number of cluster digests than the number of

true clusters in order to determine the sensitivity of agglomerative and K-Means

clustering to the number of clusters identi�ed { in real world applications, the

true number of clusters is unknown, so the number of clusters the user chooses to

identify is unlikely to be the same as the true number of clusters. To demonstrate

that knowledge of the true number of clusters does not necessarily improve the

results, we also have agglomerative and K-Means clustering identify six cluster

digests and return the best three of the result. (The best cluster digests are those

which maximize average pair-wise similarity).

For each set of cluster digests provided by an algorithm for a given run,

we compute two \goodness" metrics. The �rst is digest purity: we want each

digest to contain only documents from a single one of the true clusters. Purity

of a digest is therefore de�ned as the maximum number of documents within

4 Available at http://www.research.att.com/ lewis/reuters21578.html
5 Experiments were run by e-mail database owners on their personal machines in order

to maintain their privacy. This required our experiments to complete over a single
evening so that their machines were free for regular work during the day.
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Fig. 4. Purity and Diversity Results for the Cluster Digests

the digest that belong to the same true cluster, divided by the total number of

documents within the digest. Another metric is digest diversity: we want each

digest to present a topic that is distinct from the others. Cluster diversity is

therefore the number of true clusters covered by the dominant class from each

cluster digest. This implies the maximum diversity score is 3 since we apply the

algorithms to �nd only 3 digests in this experiment.

The results of the experiment appear in Figure 4. As can be seen, C-Evolve

is superior to all other schemes with respect to the purity metric. With respect

to diversity, it is superior to all but the agglomerative algorithm which identi�es

three clusters before returning the digests of each. Surprisingly, the algorithms

which attempt to identify the true number of clusters do not fare any better

than their counterparts which identify only three clusters.

Evaluating Interactive Clustering After a set of topics is discovered, Athena

allows the user to populate these topics with additional documents by applying

the classi�er from the previous section. We evaluate how well this technique

works when attempting to fully recover the true clustering by completely par-

titioning the input documents. For these experiments, we select 5 folders at

random from each data-set and intermix the documents to form the algorithm

input. Once again, �fty trials are performed on each data-set and the results

averaged.

For this experiment, we have the K-Means and Agglomerative clustering

algorithms attempt to identify the true number of clusters (5 in this case). For

each cluster identi�ed, each document is considered an \error" if its class does

not match the dominant class of the cluster. Following [SYB98], we compute the

accuracy of a given clustering as one minus the error rate.

We apply C-Evolve repeatedly until each folder is discovered (a folder is said

to be discovered by a digest if the dominant class of the digest matches that of

the folder). Typically, the number of digests identi�ed in order to discover all

folders exceeds the true number of clusters by only one or two.We compute errors
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for this approach by �rst summing up the total number of documents in each

digest that do not belong to the dominant class of the digest. This error value

is then added to the number of errors produced by the classi�er in populating

the clusters with the remaining documents. To simulate user-corrections, before

applying the classi�er, we remove any errors from the cluster digests and merge

cluster digests that discover the same folder. We also evaluate the e�ect of having

the system present the user with a small number of randomly-selected examples

for manual correction of Athena's classi�cation before the classi�er is applied in

order to broaden the training set. We tried both 5 documents per folder and 10

documents per folder. Each document presented to the user by Athena is counted

as an error if the suggested class is not the folder to which the document actually

belongs.

As can be seen in Figure 5, our interactive approach to clustering leads to sub-

stantial improvements in accuracy over standard clustering techniques. Manual

correction of Athena's classi�cation of a small number of randomly-selected ex-

amples before applying the classi�er leads to further improvement. Note that we

obtain these results even though we provide the traditional clustering techniques

with knowledge of the true number of clusters. The fact that such improvements

are possible suggests that a \true" clustering as envisioned by an end-user who

organizes documents rarely matches the true clustering as de�ned by any statis-

tical technique. By allowing interactivity in the clustering process, our approach

allows the user to guide the algorithm towards a more desirable partitioning of

the input documents.

4 Conclusions and Future Work

We addressed the problem of simplifying the process of hierarchical document

organization and management through text mining algorithms. Using classi�-

cation and clustering as the basic building blocks, our Athena system provides

rich functionality for automatic creation and maintenance of hierarchical text

databases. Using Athena, users can discover topics in their unorganized collec-



tion of documents and partition the documents according to these topics. They

can reorganize a hierarchical collection into a di�erent hierarchy by giving only

few documents as examples. They can exploit the information contained in their

current hierarchy to route new documents. They can also �nd mis�led docu-

ments and identify when some node in a hierarchy may need reorganization due

to concept drift within a node.

The implementation of this application placed new requirements on the clas-

si�cation and clustering technology, making the use of standard solutions in-

adequate. For classi�cation, we enhanced the basic Naive-Bayes algorithm with

several features including the use of Lidstone's law of succession, under-weighting

long documents, and over-weighting author and subject. These enhancements led

to 7 to 29% absolute increase in accuracy on our real-life test data sets.

We also developed a new interactive clustering algorithm. This algorithm

�rst �nds highly accurate cluster digests (partial clusters), obtains user feedback

to merge/correct these digests, and then uses the classi�cation algorithm to

complete the partitioning of the data. In our experiments, this new algorithm

resulted in 10-20% increase in absolute accuracy over k-means and agglomerative

clustering. While strict classi�cation and clustering algorithms have been well-

studied in previous work, this interactivity dimension has received comparably

little attention. We feel further research directed towards cooperation between

on-line data-mining algorithms and the end-user will prove fruitful.
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